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1. Introduction
Few people knowledgeable in computer science would deny the assertion

that we are in the midst of a revolution caused by the increased availability

and power of computers. Yet, few can predict what lies ahead just two

decades from now based purely on what modern electronic computers have

accomplished over the last 25 years. But one thing is sure, the information

explosion will continue and at an ever increasing rate. This, coupled with

the continued declining cost in computing, will make data processing our

number one national asset in the management and organization of our resources.

We predict that the need for computer-based decision support system (DSS)

will increase dramatically.

During the 60's, much hope has been placed on the so called "Information

Management Systems" to support humans in various stages of decision making.

While many systems have been developed, the dream was never quite realized

due to the fact that technology was not there. If history is any guide in

computing, we can safely say that demand on the sophistication and usage

of DSS will exceed its actual capability by a wide margin. In light of the

trend that this nation will become so dependent on such systems that mistakes

can have serious economic, political or environmental impacts, it is important

that resources be devoted now toward the understanding and construction of

such systems.

This report contains findings of a summer study/supported by ARPA, on

the requirements and design of future decision support systems (FDSS). It

is our opinion that computer science as a discipline has finally reached

sufficient maturity to provide a technological basis for realizing much of

the goal of "information management systems"of the last decade.
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2. Characteristics and Requirements for Future Decision Support Systems

There are many decision support systems (DSS) which work well today.

However, most of these with any sophistication are specialized small systems.

Large systems are usually badly designed with ad hoc techniques. As a con-

sequence, it is usually extremely costly to modify such systems. The study

here is not intended to come up with piecemeal solutions to the existing

problems, but rather to investigate the feasibility of developing a methodology

for constructing decision support systems which can meet the demands of the

next decade. We think that through this more systematic approach to the problem

as a whole, many of the existing problems will also be solved. We shall first

outline some of the important features of FDSS.

a. Physical Characteristics of FDSS.

i) System is geographically distributed.

We expect most large systems to consist of a number of smaller

DSS, organized in parallel or in hierarchies, and communicating

with each other (see example in section 3).

ii) System is large.

It usually contains vast amounts of data of different types,

and many processors.

iii) System will be used by many different kinds of users for

decision support.

iv) Dynamic environment.

Data is constantly added or deleted from the system, and

requirements are changing (due to new applications or new

machines, etc.).

b. Requirements for FDSS

i) Adaptability and Modifiability

DSS should be adaptable to a wide variety of problem domains.
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In particular, the system should be able to evolve to improve the

quality of its support. This can be done by adjustments made either

on the information content or structure of the system.

The design for the system should be such that usually small

changes in the environment of the system should cause correspondingly

small changes in the system.

ii) Intelligence

We expect that more sophisticated DSS should be capable of

engaging in complex dialogues with users, and is capable of providing

fast response to complex queries most of the time. We shall make

explicit two features that DSS should have to achieve this goal.

ii.a) Domain and goal knowledge

Besides the obvious knowledge of the domain, the DSS should

have general knowledge of the types of goals of interest to the user.

Why a knowledge of goals? Since the data base is assumed very

large, we must assume that the user does not know all the implications.

Hence, it is the system's responsibility to point out to the user

relevant data of which the user may not be aware, and which he may

not have thought to ask, but which would help his goals. For example,

a system to support software design should be able to evaluate and

respond to a query such as "I intend to make such-and-such changes

in the design, what are the effects of these changes? Why?" The

system must therefore maintain a general awareness of the domain

as it is being queried and modified by the user. This knowledge

about goals represents the knowledge of (human) experts in different

problem situations.
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The DSS's answers should be relevant, i.e., be directed

toward the known general goals of the user. They should also be

explicit and given at the level of thought that is familiar and

comfortable to the user.

ii.b) Generality

DSS should handle unexpected situations, by asking questions

of the user if necessary. We cannot anticipate every type of query

by having a specific program to answer it.

iii) Trustworthiness

We must have a high degree of confidence in such a system.

The notion of trustworthiness implies that the system should be

reliable, robust, available on demand, and secure.

3. An Example. A scenario is described in the following to illustrate some

of the desirable properties of FDSS and the environments that surround it.

Dramatis Personae

A client interested in ordering oil. Several DSS: local, regional, nataional.

A salesman (we may assume that the salesman converses with the DSS), trans-

lating the client's requests into a language understood by the DSS. (By DSS

we shall mean the local DSS, and generally assume a combination Salesman/DSS

to avoid problems of translating client's requests to the DSS, or interpreting

output from the DSS.)

C = client.

DSS = local DSS with salesman's help.

S = Salesman as distinguished for the DSS (i.e., the human being).

Scenario: (parenthesized statements are explanatory comments about the DSS).

C: I need 1,000 units of oil, quality premium, at Harlingen depot.

DSS: when?

(an order needs a date of delivery)
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C: within ten days.

DSS: 1,000 units will be available at $14/unit within the specified time

period. 800 units will be shipped from A and 200 from B.

(System uses operations research tools. For example, it may utilize

a "Linear Programming" program to determine an optimal solution.

This implies that the DSS knows about the existence of this program,

and the kind of inputs and outputs associated with it.)

S: Consider shipping all 1,000 units from A to save extra shipping cost.

(Salesman intervenes to try to improve the solution from the DSS.)

DSS: Sending the additional 200 units from A would increase overall cost.

S: why?

DSS: An additional truck from A would be required carrying only 200 units.

In the proposed solution, the truck from A is full, as it is delivering

oil to other customer.

(DSS explains answer by comparing the solutions. The "discontinuity"

in the truck capacities is noticed.)

C: Okay.

DSS: Before confirming, let me mention that if you are satisfied with

only 800 units, the cost per unit will be only $13.40/unit.

(The dimensions of an order are: size, cost,delivery date, delivery

delay, security of the delivery, price guarantee, etc., the system

is now looking for discontinuities near the order as given by the

customer.)

C: No, 800 is not enough.

DSS: I can ship up to 1,500 units at almost no additional shipping cost.

(First, a discontinuity down from the size of the order was noticed.

It was found by considering tables of prices and amounts of oil

available at the price. Now the system has found a discontinuity

up from the order size.)
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C: OK, ship 1,200

DSS: If you can wait 4-6 extra days, I should be able to ship these amounts

for less.

(The system now looks for discontinuities in the price of the oil

if the delivery date is changed. It consults tables of expected

deliveries of oil in times close to the order.)

C: How come?

DSS: There is a scheduled ship arrival with cheaper oil.

(DSS explains, using some inferencing.)

C: What will be the cost then?

(The original DSS answer was qualitative: "for less". The customer

wants something more precise.)

DSS: I'll need 20 minutes before I can compute that exactly.

Approximate price: $12.80 - $13.35. If you call back after

5:00 p.m. I can compute the price immediately.

(The system can give approximate answers, and knows about its

capabilities, and typical system loads.)

C: I can't wait 4-6 days for the shipment, and I am willing to pay up

to $14.50/unit. Please confirm.

S. I'll try to confirm the order now.

(DSS has access to summary information about available oil at various

sites. This information is updated periodically, say every half day.)

DSS2 (Regional DSS): There are only 400 units left at A.

(In the meantime some capacity at A has been utilized. DSS did not

know about it. At confirmation time, DSS2 is interrogated.)

DSS: I can confirm shipment of 400 units from A and 600 from B, average

cost, $14.25.
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DSS3 (National DSS): Stock at A keeps running out. We must increase

shipments to A. I suggest a shipment increase of 25%.

(The National DSS keeps dynamic information on transactions, and

attempts to improve oil delivery performance.)

C: I want to plan next month's delivery schedule. I want 800 units on

the 1st, 7th, 18th and 30th. How much would it cost me?

DSS: I cannot confirm delivery on the ist, closest date would be the 3rd.

C: Okay.

DSS: Shall I confirm the following delivery schedule and cost?

Location Date Cose/Unit

A 3rd $12

B 10th 12.50

C 19th 11

D 30th 13

C: Okay.

DSS: All confirmed except delivery on 30th. Change to delivery from

location A at $13.10/unit. Okay?

C: Okay.

(An illustration of unexpected events.)

DSS3 to DSS: Bad weather at sea. Arrival of ship at D delayed 8 days

approximately.

DSS to S: Customers C2 and C3 have confirmed orders from D. They

must be contacted to check whether they can accept the delay. If

not, we need to find other sources to fill their order.

(DSS keeps a watch on the weather to the extent that it can

influence such dimensions of an order as: time of arrival,

quantity of arrival, possible loss at sea, increased cost due

to delays, strikes, etc.)

-7-

- -~----



4. Problem Domain

In the previous e:.ample, we try to exemplify several concepts which we

shall discuss in this section and point out general problems to be encountered

in FDSS research.

a. Discontinuities

The decision support system (DSS) provides information to the

user about discontinuities near the area presently being considered

by the user. (A discontinuity exists if a small change in one parameter

of the domain results in a large change in another parameter of the

domain.) Although the use of "discontinuity" concept for the design of

DSS is new, we have quite a bit of experience in the design of an airline

reservation system for western Europe utilizing this idea.

b. Distributed data

Data is distributed at different sites. Some sites may have only

summary or probabilistic data. In our scenario, there is a hierarchy

of authority, with higher level DSS having only the summary information.

Some problems encountered here include the consistency of information at

different sites, data and process migration, access rights, performance

issues, etc.

c. Knowledge bases

i) Decision support capabilities - the system can help the user make

knowledgeable decisions. This not only implies that the system

has specific knowledge bases, but also must contain general know-

ledge about the world. (For example, simulation models.)

ii) Self-knowledge - the DSS has information about its own capabilities

such as expected costs of running its programs.
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d. Inference capabilities

This aspect is of course something that artificial intelligence (A.I.)

has been concerned with for sometime. However, most of the existing A.I.

systems are small by comparison, and it is not clear that techniques

and principles used in constructing small systems can scale up. To

overcome this barrier of size, it seems that certain conceptual tools

are necessary. We list a few here:

i) Ready accesss to data and procedures

The designer must be able to think of his large data and

large procedure base as readily accessable, so that he does not

get sidetracked in data access issues.

ii) Conceptual neighborhoods

This idea is used during retrieval (relevant information is

information in the same neighborhood) and while searching a problem

space (nearness to a discontinuity or approximation of a solution).

It is an obvious extension of focused access to data. We not

only wish to access specific data, but also data "close" to these

specific data. Implementation would depend on the metrics or

topology of the data.

iii) Problem-solving tools

The designer should have a set of formalized concepts or

techniques such as planning (subgoaling, problem reduction),

backtracking, plan execution (simulation), etc., at his disposal

as tools for general problem solving.

iv) Concurrency

For large systems, it must be the case that a designer can

think in terms of many processes running concurrently.
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v) Information types

The information in a DSS must be of many types. We can

distinguish at least:

- environment knowledge (position and status of troops, trans-

port capabilities, etc.).

- user models. In the past they were often implicit. They must

be made explicit. (For the same questions, the answers given

to the Secretary of State or a colonel stationed in Turkey

will usually differ.)

- system self-knowledge. The DSS should be able to describe its

capabilities, explain its logical organization and the methods

it used to answer questions, etc.

We think that adequate engineering support for these conceptual

tools can overcome the barrier of size. We also believe that new

computer hardware is crucial for providing the necessary engineering

support. In particular, support for content-addressibility (parallel

access to data and procedures), context-addressibility )"semantic

paging" for retrieving relevant information), and concurrent

evaluation of conditions (hardware implementations of demons.)

More detailed discussions of the hardware support will be provided

in the next section.

e. Dynamic environment

The example illustrated that data changes through time. However,

in reality, the whole environment; requirements, processors, data, etc.,

changes through time.
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When constructing very large systems with dynamic environment, the

designer is forced to consider evolving systems rather than fixed

systems. One may approach this problem by designing a flexible system

structure so that small changes in system environment will impact a

correspondingly small change of the system. Or, one may predicate the

system's usage and its environmental changes in the near future so that

contengencies for growth can be provided in the design of the system.

In both approaches, a methodology for design and modeling is needed.

While it is possible to borrow from existing software design methodology

and performance modeling techniques, much more is needed. For example,

in current design methodology, design documentation is almost totally

ignored. Similarly, performance evaluation is usually done too late -

after the system has been constructed. How can performance modeling

be incorporated into the design phase is an important problem in the

design of evolving systems!

In order to develop a methodology for the realization of FDSS,

we conclude that knowledge in many diverse disciplines of computer

science including software engineering, artificial intelligence,

modeling, data management, and computer architecture, must be brought

to bear on these problems. We shall present our technical findings in

the next section.

5. Technical Findings

a. System Structure

It is a well accepted principle today that large software systems

should be structured hierarchically with each level in the hierarchy

described by an abstract machine which is implemented by the machine at

the next lower level.



In Figure 1, we propose a hierarchical organization of language

interpreters, memory management systems, and hardware that we believe

can provide an integrated data system for decision support in the near

future.

The proposed system can be accessed by the user via many languages;

a subset of English, a Formal Data language, and Predicate Logic, etc.

Other languages are implied by the various support systems saich as

statistical and mathematical packages, graphics, and various models;

economic, political, etc. Much complexity is implied for understanding

statements, questions and commands in the several languages that have

been mentioned. Each language requires an interpreter that embodies a

description of the language it can accept and a set of transformations

to produce representations of its input in the common language of

semantic relations. The prevalence of inference rules introduces

virtual data paths of potentially infinite length and questions

requiring many inference rules for computing their answers may greatly

multiply the number of data accesses in the system.

Effective computation of inferences will require improved architecture

with parallel processing capability among shared fast memories as well

as disc processors such as the proposed CASSM system that can provide

parallel disc searching capability. (see Appendix 6).

It should be pointed out that levels in the proposed system are not

fixed, but is rather flexible depending on the specific system (see

part d below). In the next few subsections, we shall focus our attention

on various problems and issues associated with such a proposed system.

b. Semantic Representation

One goal for data management research is an integrated data system

-12-
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that uses a common representation for tables, logical assertions, and

text. Tabular information is the stock in trade of current data

management systems and its usefulness is well established. Text is a

term that describes the content of general files of symbolic material

such as programs, unprocessed data, and natural language. Logical

assertions include simple propositions, inference rules, and systems

of e.,sertions that are in fact predicate logic programs to accomplish

certain computations, e.g., proofs of programs, grammatical analysis

and problem solving.

A unified representation for all these materials is required to

minimize the complexity of the system. A possible common representation

formalism into which logical assertions (tuples), tables, and text may

be transformed is Quantified Semantic Networks. The networks provide

indexing to any extent desired and a classification system for all

elements of vocabulary used. They are generally operated on by three

operators, ASSERT, DELETE, and QUERY, and include full logical inference

capability. In Appendix 1, the power of quantified semantic network

for the proposed integrated data system will be discussed in detail.

c. Performance Modeling

Modeling will play a curcial role in the development of a design

methodlolgy for FDSS. We shall identify a few areas involving modeling.

i) One of the contrasts of existing data base management systems and

AI systems is that in DBMS design extreme care is used to minimize

the storage, whereas full indexing is usually employed for Al

systems for flexibility. It is clear that flexibility is necessary

for FDSS and must be paid for. The question is, how much? In

our proposed system for an integrated data system, we advocate the
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use of quantified semantic networks for representing all kinds of

data. It is necessary to know the tradeoff between flexibility

and storage inefficiency at each level of the system hierarchy!

We believe that performance models should be set up for such a

system, with levels of abstraction clearly identified, so that such

tradeoffs can be measured in a relatively precise manner.

ii) Subsystem Performance: Competition and Interference in Distributed

Systems

Performance modeling of program subsystems within a larger

geographically distribured hardware system configuration have not

been fully accomplished. The transition to a distributed environment

with network interconnections and hetergeneous host computers adds

an extra dimension of complexity. Performance characteristics of

the computer network and the associated host computers must be

estimated under varying workload conditions ans the effective

resource availability to the given subsystem determined under

varying load conditions. The performance of the specific subsystem

in question can then be predicted through analysis of competition

with other programs for the effective amounts of system resources.

This characterization will require, however, the determination of

the performance of the program as a function of the competing pro-

grams, the system configuration and the effective resource levels

available under varying workloads. The National Software Works (NSW)

is a prime example of a program which operates in such a competitive

distributed environment. NSW competes with the other processes

extant on the ARPANET, both for network resources and for resources

with the host computers.
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We can use NSW as an example of the types of factors which

are involved in subsystem performance analysis. Questions that

we are interested in (in WW terminology) include:

How does MSG response time vary with the TENEX "pie-slice

(fraction of CPU time dedicated to NSW)?

How does the non-NSW workload on the TENEX PDP-IO's impact

NSW performance?

• How will changing the hardware configuration (for instance,

increasing the amount of main memory) impact performance?

Can similar performance tools be used to analyze MSG running

on other machines, such as an IBM 370?

• How will network load impact performance of NSW functions

operating on geographically distributed machines?

iii) Reliability Models

Reliability plans for distributed data base systems are complex

because of the number of factors that need to be considered.

Enhanced reliability is achieved at the expense of additional hard-

ware and increased processing and communication requirements. It

is very important to estimate the overhead in enhanced reliability

protocols. It is, therefore, necessary to have modleing tools to

predict the impact of performance of different reliability plans.

Our overall goal is to model the interrelationships between

reliability and performance. For instance, from the point of

view of rapid recovery it is helpful to have two copies of a file

stored in proximate locations in a network (RECOVERY ISSUE).

Proximate copies also reduce the overhead of maintaining consistent

copies (CONSISTENCY ISSUE). However, from the viewpoint of btaining
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rapid responses to queries it may be preferable to have copies

placed in widely separated locations (PERFORMANCE ISSUE). We pro-

pose to build performance models to help resolve these tradeoffs.

iv) Design of Evolving Systems

We cannot afford systems which require drastic expenditures

to adapt to changing environments. It is generally accepted that

rapidly changing environments are a fact of life in the computing

area and especially so in decision support systems. There are two

ways of designing systems to handle the costs required to adapt

systems to constantly changing user requirements. One approach is

to design systems to meet all eventualities without attempting to

specify what contingencies are likely to arise in each specific

case. . second approach is to require planners to consider

posrAbie contingencies, evaluate (rough) probability estimates of

differ nt scenarios, and then plan systems to adapt gracefully to

probable contingencies. Scenarios may be specified in terms of

pessimistic, average and optimistic estimates. The process of

gauging future contingencies must proceed periodically, as the

system evolves. A static design is concerned with how to distribute

data and processors, select communication line topologies, and so on.

However, a contingency plan must include a complete design for the

current period and then specify appropriate actions for probable

contingencies in future periods; for instance, IF after two years,

the level of activity in the Gulf region develops as expected, THEN

increase the processing capability in that region as planned;

HOWEVER, IF the level of activity is much less than expected, THEN

shift processing capability to headquarters ..... It is important
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that such performance models be part of the overall design model

so that performance of the system can be controlled at the design

level.

d. Software Design: Development of a Comprehensive Methodology and Tools

i) Design Philosophy

We advocate a design approach that is somewhat like the process

of sculpting a block of stone; this is done by chipping it away

gradually as the finalized sculpture takes shape. In order for the

software designers to do their refinement steps effectively, the

designers need guidance as to where to chip next, and tools for

measuring how close they are getting to their goal.

Formally, we propose to characterize the design process by

means of three interacting models: a model of the system structure,

a model for system (performance) evaluation, and a model for design

structure documentation. These three models will be refined

simultaneously during the design. Furthermore, in order to allow

a designer to "tinker" with his design, we propose a computer

processable specification language and tools so that early feedback

can be provided to both the deisgner for the quality of his design,

or to the user for the inadequacy (if any) of his requirements.

In the next few subsections, we shall describe briefly the

progress we have made toward the development of a comprehensive

design methodology with the aforementioned philosophy in mind,

and identify the problems that remain to be tackled.

ii) Design Process

Our concept of the design process is that it consists of many

stages, each of which has a model that satisfies some of the con-

straints on the design and a set of constraints that have yet to

-18-



be satisfied. Figure 2 shows the different paths that the process

can follow from the original constraints (requirements) and the null

model to the final model and null constraints.

As can be seen from the figure, each step along a path can be

expanded in several different directions to reach different final

designs. Thus, each model represents a family of designs. By

providing suitable means for documenting models, we make it easier

for the designers to back up and try another member of the family

when one path leads to a bad design. We also make it possible to

consider other designs in the family when system requirements are

changed, either during the design process or after the system has

been in service for some time.

Each model along the design path is a refinement of the pre-

vious one. The first models only exhibit the gross behavior of the

desired system without consideration of performance and hardware

requirements. This is an especially important phase in the develop-

ment of the decision support systems because it clarifies the purpose

of the system by requiring the designers to state precisely what it

is they want the system to do. At the same time they are able to

simulate the system at this early stage and modify it until it

appears to be what they really want, Later models begin to reflect

the efficiency and hardware considerations as the designers begin

to outline the algorithms that will actually be run on the target

machine. Eventually through this process, the original constraints

get satisfied and the design is ready for transfer to the hardware

of the actual system.

iii) Three Models of Design

-19-
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CONSTRAINTS (=requirements).

CONSTRAINTS MODEL

SFINAL MODEL

I FINAL MODEL

FIGURE 2. -Possible paths in the design process.
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iii.a) System Structure

We envision the design of a DSS as a stepwise

refinement process of functional abstraction which begins with the

construction of a "top-level" abstract machine, Mn, satisfying the

functional requirements of some high level requirements specification.

This machine consists of a set of data abstractions represented by

formal module specifications. Each module specification is self-

contained in the sense that it specifies the complete set of

operations which define the nature of the data abstraction.

Collectively, these data abstractions define the data model which

is visible to the user of the machine.

In the next step of the process, another abstract

machine, Mn, representing a "refinement" of M is designed. Its
n

data abstractions are chosen in such a way that they can "implement"

those of M . Basically, this implementation consists of a set of
n

abstract programs each of which defines an operation of Mn in terms

accesses to functions of machine Mn. A verification process can

then be used to ensure that the implementation is consistent with

the specification of both machines.

This stepwise process of machine specification,

implementation, and verification proceeds until, at some point, the

data abstractions of the lowest level machine can be easily

implemented on a specified "target" machine, which may be the

data abstractions of some programming langpage, a low-level file

management system, or the operations of some appropriate hardware

configuration. This design process results in a structure con-

sisting of a hierarchy of abstract machines, or levels, M n,M n,...M0
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connected by a set of n programs I, Inl " 1  Each machine Mi

in the hierarchy represents a complete "view" of the system at a

Ii(l<i<n) represents the implementation of that view upon the next

level machine Mi I .

We observe that the notion of levels of abstraction

translates to a natural interpretation within the context of decision

support systems. That is, we can expect that any integrated data

system will have a wide variety of users whose views of the system

and access requirements will be quite different. Through the hier-

archical design approach different levels of design may be constructed

to accommodate this bariety of views and access requirements. A

specific view representing one path of Figure 1 is shown in Figure 3.

It is observed that through hierarchical design,

many different users may be accommodated, and that reliability and

understandability of the system is enhanced. Furthermore, such a

system is machine and application independent and hence can evolve

with its environment. More detailed discussion of this model is

contained in Appendix 2.

iii.b) Design Structure Documentation

The role of specifications in the development of

large software systems is quite important. Specifications are used

not only as a means of communication between members of the design

team, but also serve to enhance the understandability of the system.

This is important both for users of the system-and for future design

teams which must perform modifications.

In order to understand a system as a whole or

for explaining why a particular design was developed, there exists

the need to document the system design and the design process.
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EXTERNAL USER

n

EXTERNAL USER 0 0

0 0 - .n-1

12

TARGET MACHINE MO

Fig. 3. A hierarchy of formally specified machines

showing modularity. Levels may be constructed

to accommodate the different views required by

various users.
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Such documentation would suppress details - concentrating rather on

the global properties of the system design and the design structure.

We have introduced a System Design Langauge (SDL)

which can be used to document the design process and record infor-

mation about the decision-making processes that occur during it.

The features of the SDL include methods for:

1. specifying the design alternatives at

each level,

2. specifying the hierarchical relationships

between system modules, and

3. specifying the structure of each system

level.

More detailed information of this language is contained in Appendix 2.

However, much more development is needed in order for the language

to accommodate the dr-ign structure of concurrent, multiple user

programs.

iii.c) Hierarchical Performance Evaluation

The success or failure of any DSS, of course,

depends greatly upon the level of performance which the system

achieves during actual operation. Based upon the results of

current research efforts, however, it would seem that our approaches

to performance evaluation are somewhat less than satisfactory. This

section contains a very general description of a performance evalu-

ation technique which can be used with the hierarchical design

approach and which seems to have several advantages over current

performance evaluation procedures. This technique involves the

construction of a hierarchical performance evaluation model. The

purpose of this model is two-fold:
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1. to provide the designer with feedback at

each step of the design process as to the

performance characteristics of his design,

2. to provide part of a basis for choosing

between alternative designs at each level.

In this approach the designer develops the system

design and evaluation model in parallel - the evaluation model being

constructed so that it represents the relevant performance aspects

of the current system design. The evaluation model provides con-

stant feedback to the deisgner at all levels of design as to the

performance characteristics of the system. Through constant inter-

action between designer, the system design, and the evaluation model,

it is hoped that a reasonably efficient system can be developed with

a minimum of backtracking and redesign.

Evaluation Model Structure

The structure of a hierarchical evaluation model

reflects that of the system design itself. Corresponding to the

ith level is a set of performance parameters, Pi, which represents

the relevant performance aspects of the machine at each level.

Data structure parameters represent information about the abstract

data objects of the level (e.g., number of relations, average

number of records per block, etc.). While function parameters

characterize the operations of Mi in terms of expected execution

speed and expected frequency or probability of access. Parameters

may also be classified as design parameters or scenario parameters.

Deisgn parameters are variables whose values may be changed by the

designer to determine the effects of various database designs and

implementations upon the performance of the system. Scenario
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parameters, however, represent an expectei usage of *he system in

terms of the operations and data objects of level i. Their values

are determined by the values of parameters of P according to a~i+l

performance parameter mapping set T i+ . Each mapping in this set

defines a performance parameter of Pi as a function of the parameters

of Pi+l" A set of values for the scenario parameters of level i

is called a scenario for level i.

The values of scenario parameters of P are deter-n

mined by an application scenario supplied as part of the high level

requirements specifications. The application scenario is a state-

ment of the expected use of the system in terms of the operations

and structures of machine M . The requirements specification alson

contains a performance assertion which specifies the level of

performance expected from the system for the given scenario. This

performance assertion, by its structure, will indicate the measure

to be used in analyzing system performance. Various performance

measures might include:

1. mean response time for a given load,

2. expected total execution time for a specified

mix of operations,

3. total storage requirements, or

4. a suitably weighted mixture of the above.

The specification of this performance assertion enables the designer

to construct a cost function, Cn, for M using the parameters of
n9 n

P . This cost function may be used by the designer to estimaten

the performance characteristics of M
n

It should be noted that this model is only a proposal,
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experiments are needed to evaluate the adequacy of this model,

particularly, in the multiple user environment.

iv) Design of Concurrent Systems

The progress made so far is primarily in sequential systems

and must be extended to concurrent systems to be viable for DSS.

We discuss some of the issues that are peculiar to concurrent

systems here. In addition to the usual problems encountered in

sequential programs, the two most important problems are

(i) managing the interaction between processes;

(ii) supporting multiple views of the system (simultaneously)

for multiple users.

In recent years, a number of techniques have been advocated

for dealing with the design issues of concurrent systems. These

may be summarized as the following:

(i) Hierarchical Decomposition: This technique has been

used with great success for sequential programs. For

concurrent programs, it has so far been much less suc-

cessful, since the decomposition of a part needs to

take into account the interaction of that part with

several other parts.

We propose a methodology for decomposing a cluster

of functions simultaneoulsy, where the cluster members

greatly interact with each other, and interact only

slightly with functions outside the cluster.

(ii) Notion of information hiding: A way to enforce the

module independence is to place a discipline for limiting

the interactions among them. Furthermore, the modules
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do not exhibit their internal details, thus enforcing

a discipline in their invokation. These ideas are

applicable to concurrent processes; we propose a view

of process interaction which takes this into account.

(iii) Enforcement of Coordination: Coordination of the inter-

actions among processes has been studied at great depth,

since the pioneering work by Dijkstra. On cooperating

Sequential Processes [Dijkstra, 1968], solutions using

P,V semaphores dealt with machine level concepts.

Ultimately synchronizing mechanisms have to rely on

such low level concepts for their implementations.

However, it is counterproductive to study a complicated

system synchronization problem in terms of these

primitives. Many different high level constructs have

been proposed for synchronization; each of these can be

viewed as a means of event driven coordination.

"Demons" have been used in A.I. work to trigger

processes whenever an associated condition arises. Thus,

some processes are driven by events rather than through

explicit invocations. Current attempt is to implement

demons efficiently.

Another method of synchronization is through explicit

transfer of messages between processes. It is usually

implemented through a central "post office" with "mail

boxes" which actually are message buffers. This method

has been found to be useful in communicating with processes

whose identities are known to the communicating process.
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A notion of "monitor" has been advocated by Brinch-Hansen [19731

and Hoare [1974]. Monitors are attached to shared global data, through

which processes may interact. Monitors enforce mutual exclusion in

access to shared data. They also implement a scheduling policy for

access to that data (first come, first serve, for instance). Thus,

the monitor acts as a central scheduler for access to the data.

For performance, as well as the information hiding point of

view, the following process interaction figure illustrates a number

of ideas related to process coordination ideas:

f SCHEDULER

SHARED DATA

~ PROCESS

-SHARED DATA
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Processes interact explicitly with messages sent through

implicitly shared data. The process scheduler is transparent both

to the process and to the data. A process is not aware of other

processes when accessing shared data. Hence, it may be designed

and verified as a sequential program, given only the semantics of

rperations on data.

Similarly, the data object is not aware of multiple simultaneous

accesses to it. Hence, it may be designed and verified independent

of the invokation sequence.

The scheduler handles the various aspects related to process

synchronization in accessing shared data. Each request for access

to a shared data is routed to the proper scheduler who decides

whether to grant access or not. If a process is granted access to

shared data, it returns to the scheduler on completion. If a

process is denied access to shared data, the scheduler may put the

process in a wait sequence. The scheduler, in fact, implements the

scheduling policy. It may grant multiple processes to access the

same data simultaneously (as in the reader/writer problem). It

may furthermore enforce security constraints.

This decomposition of the problem into its three essential

components results in a decomposition in design and verification.

Essentially different properties may be proven corresponding to

each part.

(i) Process: Correctness of computation. This may use

traditional techniques in program verification.

(ii) Scheduler: Absence of deadlock; fair scheduling;

absence of indefinite postponement of processes;

correctness of access sequences to data.
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(iii) Data: Correctness of implementation; integrity. Data

verification techniques for sequential programs are

applicable here.

An open problem is how to partition data base so that different

schedulers are assigned to different portions of the data base while

activities are still coordinated.

We propose to study the verification issues in the scheduler,

particularly the problem of verifying each property independently.

The basic idea is to verify each property based on certain axioms

so that the verification of another property does not nullify the

axioms. A formalism for studying such a partitioned environment

has been developed and is discussed in detail in Appendix 4.
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v) Data Base Design

Data bases form an integral part of any DSS. However, the

systematic design of data bases has eluded researchers in this area.

In this section, we shall describe how automatic theorem proving can

be used in data base design, and how system design methodology might

be applied to data base design.

We are concerned with a data base system which consists of a

very large memory and mechanisms for processing ana answering

queries. Also mechanism should be available for processing and

storing information in the memory.

Some queries would require the finding of one or more items in

the memory on the basis of a given KEY, while others would require

calculations and inference on the information im memory.

We envision a hierarchical system whereby (in some cases) a query

causes the fetching of selected items from the large memory, and

putting them into an auxiliary memory (e.g., high speed core) for

further processing in order to answer the query. For example, we

might fetch a part of a semantic net from the large memory, and

bring it into auxiliary memory for further processing.

The fetching operation itself may require "intelligent"

mechanisms, such as simple inferencing (e.g., and-gates, or-gates,

matching, table lookup, etc.), calculations (counting, averaging,

weighted sums, etc.), and various other methods.

Also, within the auxiliary memory, more complex mechanisms would

be used to complete the answer to the query. Since the amount of

material being processed in the auxiliary memory is drastically

reduced (from the amount in the large memory) we could afford to

employ much more sophisticated inferencing programs and calculations.
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The large memory might be "distributed" over a large number of

sites, with different formats for data in each site, so the

hierarchical system might be required to employ different local

mechanisms for different sites. And these might be more than two

levels in the hierarchy, thereby processing a query in a number of

stages.

The large memory might employ new and/or novel concepts in

hardware design, including parallel searching ability, content

addressability, and ability to do minimal inferences and calculations.

The design and implementation of these concepts should be correlated

closely with the design of the overall system.

v.a) Automatic Theorem Proving as an aid to Data Base Design

and use.

It is highly desirable to have data base systems

which can give answers which are not explicitly stored in their

memory. For example, a data base which contained only the two

entries (A is an ancestor of B) and (B is an ancestor of C), should

be able to answer "yes" to the question: (A is an ancestor of C),

even though that entry is not explicitly stored in the data base,

(provided that it was given an additional inference rule on the

transitivity of "ancestor-of").

Much more complicated examples than this can be

handled using inferencing mechanisms, but the problem gets more

difficult as the size of the data base memory and the complexity

(or depth) of the inference is increased. It depends of course on

how the entries are stored (as relations, semantic nets, etc.) and

what inferencing mechanisms are used. But it is clear that automatic

theorem proving (ATP) plays a central role here. It is not that we

can use our existing provers as off the shelf items to be "plugged"
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into this new application, but rather we expect to use the concepts

and experience with provers. This situation is similar to that of

Program Verification where existing theorem proving prggrams were

heavily modified before they were inserted as modules in several

program verification systems.

A good deal of research has already been conducted

on inferential data bases. For example, the rather large effort in

natural language understanding [Chester & Simmons, 1977] falls in the

category as well as many others. Some of these workers have had con-

siderable experience in automatic theorem proving. But, their efforts

have left much left to do, especially for large scale systems. Also,

it is important that in designing and building new large data base

systems (or in developing general procedures for large data base

design), that inferencing mechanisms properly interface with the

rest of the system. It is important that ATP people work as part

of the larger team.

As mentioned earlier, the inferencing mechanisms

might be minimal at the fetching point in the large memory. It

would probably not be feasible to carry out there more than simple

and-or gates, and matches. A possibility would be to retrieve a

subset of the data base which is clearly relevant, and to perform

inferences and calculations on it in the fast auxiliary memory.

Such an interaction might require severa' references to the large

memory, when and if the processing uncovered the need for further

data from the large memory.

Even in the fast auxiliary memory we do not expect
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the inferencing to be very deep (like, for example, the proving

of a difficult mathematical theorem).

A more detailed explanation of ATP in data base

design is provided in Appendix 5.

v.b) Hierarchical Design of Data Bases

Because of the dynamic environment faced by DSS,

the data bases supporting a DSS must be able to adapt frequent

changes without extensive reorganization. The top-down system

design methodology can be applied in the design of data bases to

improve their adaptability. The data bases designed with such

methodology will also provide automatic linkages between decision

models and have self-organizing capabilities.

The data base design process starts with a high level

description of the universe of discourse (UOD) - the part of reality

that is of interest to the users. A top level data base schema is

just designed to represent this high level abstraction of data. Then

the stepwise refinement process begins; at each step of refinement,

a new data base schema is formed with more details of the UOD and/or

more details of how the data base is actually stored. A hierarchy of

data base schemata is thus generated. The schema at the lowest level

of the hierarchy contains the storage structure of the whole data base.

By using this approach, related data can be "clustered" together and

small changes of the environment will only induce small changes in

the data base.

Note that in the top-down data base design process,

there is no distinction between "logical data base design" and

"physical data base design". Traditionally, "logical designs" only
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consider the user convenience and data semantics in constructing data

base schemata; the "physical designs" only consider the efficiency

factors in designing storage structures. However, the convenience

factors and efficiency factors should not be considered separately

as they can influence each other. Our top-down methodology will

design data bases by evaluating different factors in their order of

importance without a rigid separation between "logical" and "physical"

factors. The data bases thus designed should have a better overall

performance than those designed using traditional methods.

When the details of the UOD are added to a data base

schema, some data abstraction techniques (such as the ones developed

by Smith and Smith [ 1) can be used as a guide for refinement. We

will develop more "abstraction operators" as the two operators

developed in [ ], aggregation and generalization, are not sufficient

for the construction of the schema hierarchy. For example, at one

level the schema may contain a field total sale per year, and at a

lower level the other schema may contain the field total sale per

month; the "abstraction operator" we need in this case is a summation

operator. This concept of "abstraction operator" can be generalized

to contain a whole decision model: the schema in a higher level

contains the output of a decision model which uses the data in a

lower level schema as its input. The schema hierarchy constructed

by using such operators can provide each decision mcdel the required

data and can support automatic linkage between different decision

models. A strategic model (e.g., a cooporation model) may need some

data from the outputs of different tactical models (e.g., financial

planning models) or operational models (e.g., payroll model and

marketing model). Upon the activation of the strategic model, the
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data base system can automatically activate the tactical and operational

models that are needed. Sprague [ ] noted that the successfulness

of a DSS largely depends on the system's ability to link different

decision models together. Our design methodology provides a solution

to the linkage problem.

The characteristics of the multi-level virtual machines

(fig. 2) designed with top-down DBMS design methodology can also be

utilized in the data base design process. If a data base schema is

based on a level of virtual machines in the system hierarchy, the

performance of the schema can be predicted by using the performance

evaluation functions developed for the virtual machines. Such per-

formance evaluation can also be applied to guide the self-organizing

activities of the data base, the data base schemata can evolve with

changing environment in order to optimize the performance.

v.c) Design of distributed data base which uses summary

information

The design problem is related to responses based on

incomplete or partial information. An example of a flight reservation

will illustrate the idea. Consider a primary data base (central computer)

which has (all) the information regarding a flight booking. There are

several secondaries (mini-computers with slight memory) which can be

used to make a reservation. Each secondary holds 1 bit of information,

which denotes whether the number of vacant seats in the flight exceeds

10% of the flight capacity. The secondary uses the following logic

to book a seat or deny a request.

If the bit shows availability of vacant seats (more

than 10% of flight capacity) then a seat is booked on request and the

primary is informed of the booking. Otherwise, the request is denied.
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Periodically, the secondary might receive messages from primary to

turn the bit off (vacant seats less than 10% of flight capacity due

to a number of bookings) or on (following cancellations).

Primary uses the information received from the secon-

daries to decide whether the bit should be off or on; it transmits any

change in the status of the bit to all the secondaries.

The point of this example was to show that rapid

response to queries can be provided based on incomplete information.

However, the danger in the above example is that of overbooking (too

many secondaries book simultaneously) and underbooking (all secondaries

were instructed to cease booking while there were a number of vacant

seats). It seems that this method can be used to keep summary

information to serve several sites most of the time; however, some

time (with low probability) all the current information may be needed.

We propose to study the use of summary information in several real life

problems and to generalize the idea. Furthermore, the effectiveness of

such strategies have to be studied with probabilities of erroneous

response and probability of querying the primary data base.

vi) Tools

A set of software tools must be developed along with the methodology

in our project to aid the construction of decision support systems. We

should include four classes of tools: languages for communication,

modeling system for testing out our ideas, reasoning systems for exploring

the consequences of our ideas at a general level, and knowledge systems

for gaining from our past experiences. It is envisioned that such an

integrated set of tools is itself a decision support system. With such

tools, a designer can tinker with his designs by executing and testing
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specifications, or ask the system questions such as, "I intend to make

such a change to my design, what will the consequences be, and why?"

We will explain in the following an initial set of such tools.

a) Languages

i) A requirements language. This shruld be a restricted form of

English and/or graphics for stating the problem initially. It

is characterized by its vagueness and high level of abstraction.

ii) A specifications language. This should be a formal, non-

procedural language for stating the problem after it has been

clarified. A specification in this language fixes a particular

representation of the problem so that finitary procedures can

be applied to obtain a solution. This language is considerably

less vague than the previous language. It may even be precise.

A computer executable specification language is developed, a

sample is given in Appendix 3.

iii) A programmming language. This is the procedural language that

we use to state our proposed solutions. It may be at the level

of a modern computer language like Pascal, or it might be

higher.

iv) A meta-language. This is the language that we use to talk to

each other (and to the computer) about our engineering efforts,

that is, about requirements, specifications, programs, assertions,

documentation, models, simulations, testing, debugging, problem

solving, reporting, etc. This may just be English, but we should

try to formalize at least some of it so that we can get help

from the computer.

We may in fact have several examples of each of the above languages to

serve special purposes. In any case, each language consists of a
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vocabulary of concepts that are "natural" for the intended application;

this means that they are as close to common sense concepts as possible.

b) Modeling systems

i) An interpreter and/or compiler for the specifications and

programming languages. This allows us to test our evolving

software to see whether it does what we expect. This kind of

testing will catch many of the simpler errors and will help us

to see whether we really want the properties given in the

requirements or specifications. We need an interpreter for the

specifications language because a precise statement of the

problem is in a sense a high level solution to the vague problem

posed by the requirements.

ii) Special simulation packages. These are used to model only part

of the behavior of a system. Queuing models, for example,

simulate the interactions between processes while ignoring most

of the details of the processes. We may have a different

package for each major performance parameter that interests us.

iii) Hierarchical performance evaluator. This will be the tool to

support the hierarchical performance modeling discussed in

iii.c). We envision that such a tool has some gross similarity

to current program verifiers in that inference capability is

needed, and hierarchical performance requirements (analogous

to the verification conditions) will need to be generated.

The development of this tool will be a major undertaking.

c) Reasoning Systems

i) An interacting theorem prover. It can .e used to verify con-

jectures about the developing software. The most important

kind of conjecture will probably be that one system design is
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a refinement of another design or of the specifications.

ii) An inference engine. This is different from a theorem prover

in that it is not given a conjecture to prove. Instead it

derives "interesting" generalizations about a program or pair

of programs. It will need some guidance to know what "interesting"

means. This is the system that has the ability to discover

important facts as an active agent for the engineering team.

It can also be used to determine the consequences of a proposed

program modification will be.

iii) A monitor. This is the agent that uses the inference engine

(and perhaps the theorem prover) to detect violations of

project standards and undesirable interactions between different

programs. It can inform a designer that what he is doing con-

flicts with what someone else has done, or that someone else

has already done something similar.

iv) A symbolic debugging aid. There will be debugging aids for

use with the modeling systems, but this aid helps the designer

locate a bug by looking at the code with him. It will make

heavy use of the theorem prover and inference engine.

v) A code analysis system. This is mcre general than the debugger

in that it helps the designer find the relevant code that pro-

duced some effect.

d) Knowledge Systems

i) An advice-giver. This can help the designer clarify his problem.

It is a data base of knowledge about high level concepts,

algorithms, heuristics for solving special problems and for

general problem solving, and the technical literature. It will

be especially helpful when the designer is trying to clarify

his problem.
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ii) A project library. Here is where all written material con-

cerning the design effort is stored and made readily accessible.

It will have an extensive association network so that specific

information can be found with a minimum of keyword guessing.

It will thus give some question answering ability like the

advice-giver.

iii) A knowledge acquisition system. This is the system that we

need to put all the detailed knowledge into the other systems.

Instead of one system it might be a separate component of each

of the other systems. The success of the overall system depends

directly on the ease with which its subsystems can be brought

up to a satisfactory level of performance.

e) Computer Architecture for Decision Support Systems

The DSS computer architecture will use recent hardware advances

(especially LSI) technology to facilitate the development of the very

large distributed and intelligent data base management system. We

sketch here architectural features of a planned system and some

problems for architecture research and development.

Three major computing systems are to be accommodated. Firstly,

users interface with the data base system through a network of

intelligent terminals. Secondly, intelligent discs are located at

various nodes in this network and are powerful enough to search the

data where it is stored to avoid shipping large quantities of data

through the network. Thirdly, an array computer will use parallelism

to extend the analytical capacity of artificially intelligent soft-

ware. We submit that these three major systems have to be accomodated

because none of them alone, nor any pair of them, are adequate to

support the envisioned software.
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In the following paragraph, we shall give a brief description of

the intelligent Disc Architecture since it is used to support the

important conceptual tools by providing both content- and context-

addressability. It also can be designed to support distributed

queries in the network and to support deep theorem proving in the

array computer. Other system architecture as well as details of

how an intelligent disc can achieve content and context searching

is described in Appendix 6.

i) Intelligent Disc Architecture

From our earlier work on the CASSM system at the University

of Florida and from related work on the RAP system at the

University of Toronto, we have established techniques which

will efficiently store relational data bases and semantic net-

works on a disc. The logic associated with the disc makes it

sufficiently intelligent to resolve almost all typical relational

queries and sufficiently intelligent to greatly assist extracting

useful data from a semantic network for artificial intelligence

programs.

The disc architecture will consist of multiple moving head

discs (we are looking at IBM 3330 or equivalent stores of about

109 bits per removable disc pack) in which all heads are on a

common frame, and there is one head on each disc surface. By

moving the frame, the heads are located over a given "cylinder".

One or more such discs will be operated together so that their

"cylinders" form a larger cylinder; the data on this larger

cylinder we call a file. Each head will have a "microprocessor"

similar in complexity to current popular microprocessors but

having quite different organization and instruction set. It
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will be attractive to put each "microprocessor" in an LSI chip.

The disc track and "microprocessor" we call here a cell. The

logic looks like a chain of identical cells. In one revolution

of the discs, an "instruction" is executed on the entire file.

The file consists of records of a variable number of words, and

the words are fixed length. Records correspond to tuples in

the relational data base system and to nodes in semantic networks.

The first word of each record stores a bit stack. Other words

appear to store domain names and items in the tuple, or arcs

incident from the node in the network. A typical "instruction"

pushes a bit in the bit stack of every record in the file, which

is the result of a search for a domain name and item in the tuple,

or the result of transfering from one node to another node through

an arc in the network. Alternatively, one can AND or OR the

result of the search or transfer onto the top bit of the bit

stack in each record. These operations are accomplished by

means of a one bit wide random access memory, with as many bits

as there are records in a cell, in each cell. Significantly,

as the data base size increases, it is possible to add more discs,

so that retrieval time is relatively independent of the size of

the data base. (If tertiary memory is used, as will be necessary

for 10 12-1015 bit data bases, this feature will be harder to

maintain but is still possible). Furthermore, both tuples of

relational data bases and nodes of semantic networks can be

efficiently stored in the same record, and that record can be

accessed by two users who are working in either semantic net-

works or relations.
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ii) Problems for Research and Development

Since the intelligent disc is common to studies in networks,

relational queries and artificial intelligence it is necessary

to build a prototype disc system and make it available to the

other researchers. Since research on the architecture of an

intelligent disc has been essentially completed in the design

of the CASSM-machine, this aspect of the work is more like

development of a tool based on that research. However, the

added requirements imposed by network and artificial intelli-

gence pose some new research problems. Significant among

these are the techniques to lock out records on the file and to

regenerate a query from one file that is to be sent to another

file.

In the network architecture we expect the usual problems

of deadlock, routing, and protection. Considerable research

has to be carried out to evaluate how to take advantage of

intelligent discs that permit locking of records. Performance

studies will be required to determine the effect of strategies

to search multiple files on traffic through the network.

In the array architecture, further studies are indicated to

determine if cannonical forms can be used to make vector

operations out of operations like COND (from LISP). Studies of

the utilization of memory by concurrent vector techniques will

indicate ow successful the cannonical forms may be.

Other research questions interrelate with other areas and

will be described in other sections.
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f. Reliability Issues in the Design of Distributed Data Bases

A distributed data base has a number of different specifications

associated with it. Broadly, we may divide them into two categories:

those dealing with the user and those pertaining to the functioning

of the system.

The specifications associated with uses include (a) specification

of query language through which the user communicates with the system,

(b) specification of the (user) view of data that the system supports,

c) response time and other performance specifications. System

specifications may include those aspects dealing with integrity,

consistency, absence of deadlock, specification of a fair scheduling

policy, etc.

A number of new problems arise in dealing with system function

specification. In particular, a language formalizing such speci-

fications is a must; however, very little work has been done in

formal specifications of properties of concurrent system. The

problem can be explained informally in terms of a simple reader-

writer problem. Readers access a data base in query mode; writers

perform updates on the data base. For performance reasons, it is

desired that

(i) a number of readers may simultaneously access the data

base.

In order to avoid unpredictable modification, it is required that

(ii) no more than one wirter may access the data base at any

time. Furthermore, no reader may access the data base if

a writer has been granted access.

-46-



A fair scheduling policy must also ensure that no process is inde-

finitely postponed. Hence, it is required that

(iii) no reader is granted access to data base if there is a

writer previously waiting. Similarly, no writer is

granted access if there is a reader previously waiting

before it.

Finally,

(iv) a reader or a writer may be granted access if no other

process has been currently granted access to the data base.

A reader must be granted access if only readers are currently

accessing data base and no writer is waiting.

This problem, though simple in nature, results in a number of

distinct solutions of varying complexity. In order to verify that

a solution meets the requirements, we need to state the requirements

in a formal manner, independent of any specific solution. This

small problem highlights some of the difficulties. For larger

problems, specifications are required not only for verification, but

also to check for the consistency of the requirements.

A number of other forms of assertions, to be called "soft

assertions" [Saltzer, 1977], seem to arise in distributed data base

specifications. Soft assertions involve the notion of time and

probabilities. While probabilistic assertions have been found

useful in other areas (operating systems in particular, where one

may assert that the probability of system deadlock is less than

-510 , etc.), "time" has not been used as a parameter in specifications

of systems. The reason for this is simple: normally we deal with

algorithms or processes which do not exist for extended periods of

time or which model a part of a real system evolving in time. Data
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bases exist for years and hence must include "time" as an improtant

parameter in the system specifications.

The time dependent assertions can have a variety of types, as

illustrated below:

(i) Copy at a location A is consistent with copy at another

location B, to within one day.

(ii) Every March 31, every copy is current.

(iii) On the 1st of every month, automatic transfer of a certain

amount takes place from one account to another.

At present, no formal technique exists for succinctly stating

such assertions or verifying a system with respect to these assertions.

Probabilistic assertions deal with probabilities of events. An

event, such as total system deadlock, may not be preventable in any

reasonable manner. However, it may be asserted that the probability

of such an event is negligibly small. A number of efficient solutions

to several system problems may be designed, if one is willing to risk

an undesirable event; however, it must then be shown that the event

is highly unlikely. For instance, an airline might follow a booking

policy where the probability of overbooking by x seats does not exceed

10 (x.l) Probabilistic assertions may also relate the software's

ability to deal with physical component failures, given the proba-

bility of such a failure.

A number of research issues arise in dealing with such

assertions.

(i) formal specification technique for soft assertions,

(ii) identification of reasonable (tractable) classes of

assertions which are pertinent to distributed data bases,
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(iii) design and verification of system based on such assertions.

A system constraint of special importance is that of integrity.

It is a constraint either dictated by the application or enforced by

the data base administrator. An integrity constraint is an assertion

about the data base which holds following every transaction. Hence, it

must be verified that every transaction maintains integrity. An example

is a constraint such as "no employee earns more than his manager", or

"no manager manages less than 3 persons or more than 20 persons", etc.

However, it is expensive to verify through run time checks that integrity

is preserved. Fortunately, we have found that most of the integrity

constraints deal with the structure of the data rather than the value

of the data. For instance, social security number is an integer with

9 digits; no employee belongs to more than one department, etc. Such

constraints are routinely handled by compilers through type checking.

This idea can be exploited by preprocessing the transaction structure

to determine whether it would violate the structure constraints. However,

most run time checks are usually limited to a single tuple or a small

number of them. ("Salary of no employee below the rank of a manager

may exceed $20,000-" can be checked whenever a tuple is updated). This

type of integrity constraint does not require us to go over the entire

data base.

Another commonly occurring form of constraint dealing with an

entire data base can be checked incrementally. For instance, a

constraint might require that the average salaries for males and

females must be within 10% of each other. Normally, it would be

required to verify this following addition of every new employee and

change in salary of any employee. This constraint involves the entire

data base. However, the relevant quantities can be computed-incrementally, I
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if we keep track of total number of male and female employees and their

total respective salaries.

Most integrity constraints dealing with an entire data base exhibit

this property of incremental computation.

A problem studied by Eswaran, et al, [1976] is the sequence in which

multiple transactions may interact to destroy integrity, though each

transaction preserves integrity when executed above. They showed that

integrity is preserved if and only if every transaction locks all pieces

of data used by it prior to any unlock. This has the interesting property

that a system wide requirement is unnecessary, so long as every transaction

meets this requirement. However, the proposed method also implies a

specific order for locking data items in order to avoid potential dead-

locks. This, in turn, implies that dynamic decisions which items should

be locked during a transaction, are dangerous. Furthermore, their

solution is based around a central scheduler which grants (or denies)

locking privilieges based on the entries in a lock table, which shows

the items currently under lock. Several problems arise in connection

with multiple copies of the same data base, location of the lock table

and recovery problems when the scheduler (or the lock table) site fails.

A number of issues arise in handling multiple copies. The central

problem is that of recovery from a faulty transaction or hardware failure.

In the latter case, it may be necessary to suspend all operat'ons on all

copies; otherwise, some queries may receive incorrect responses. A

statistical approach is needed. Certain other problems dealing with

multiple copies are the following:

(i) How consistent do the copies need to be? Absolutely consistent,

within 1 day of each other, etc.?

(ii) Given sufficient time and no further updates, do all the copies

converge to the same state?
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(iii) How can the lock tables and file directories be maintained

absolutely consistently?

(iv) How are updates broadcast so that older updates do not over-

write the newer updates? This problem has been addressed by

Bunch [1977) with time-stamping and Allsberg [19771, for

inventory type data bases.

A further area of research is transaction preprocessing. If the

transaction is not dynamic, i.e., decisions about data accessing etc.,

are not made based on the outcomes of responses in the same transaction,

then it is possible to preprocess the transaction to guarantee certain

properties. As we have mentioned earlier, this can be used to eliminate

checks on the resulting data base for integrity constraints. It can be

used to guarantee legality and authorization of access.
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APPENDIX 1

SEMANTIC REPRESENTATIONS
FOR AN INTEGRATED DATA SYSTEM

R. F. Simmons

I. Languages

Semantic Networks evolved primarily to represent the deep logical semantics

of natural language discourse. Consequently communication in English is the

raison d'etre of the system and we have previously described interpreters and

granmmars that we have developed to translate sentences and queries in English

into the networks and from network structures back into English (see Simmons, 1977).

The language of semantic relations and predicates evolved as a linear ex-

pression of the networks, and statements in it may be used as arguments of the

functions, ASSERT, QUERY and DELETE to communicate directly with the system.

This language is an alternate notation for predicate logic and it is fu-ly

quantified and includes logical functions - AND, OR NOT, and IMPLIES - and

can include general functions (see Simmons and Chester, 1977).

The user may prefer for L me purposes to use a simpler language of tuples.

A predicate logic in this form was introduced to computation by F. Black (1964)

and has been further developed by Kowalski (1974). A simple assertion such as:

"the pencil is in the desk", is represented in Kowalski's notation as: (IN PENCIL

DESK)-. The transitivity of "in" is expressed as: (IN X Z)-(IN X Y) (IN Y Z),

_.e. if X is in Y and Y is in Z, then X is in Z, where X, Y, and Z are free

variables. The tuples to the left of the arrow are consequents, to the right

are antecedents. A query has the form, '-*(IN PENCIL Y). Both Black and Kowalski

show that this is a complete logical system. This language translates easily

into semantic networks. An example will illustrate:

(IN PENCIL DESK)- (ASSERT(IN Rl PENCIL R2 DESK))

(IN X Z)-(IN X Y) (IN Y Z)-.

(ASSERT(IN Rl X R2 Z ANTE ((IN Rl X R2 Y)(IN R1 Y R2 Z))))

-(IN PENCIL X) - (QUERY (IN Rl PENCIL R2 X))

#I
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The logic of answering questions in semantic networks is similar to the logic

of Kowalski's system which he has shown is very powerful for solving problems

and even for evaluating programs.

Of primary interest to data management, special functions are introduced

for asserting, querying and deleting tables. ASSERTAB as exemplified in a

following section, takes a tablename, a list of headings, and a list of

tuples as arguments:

(ASSERTAB TABLE COURSE*TAB
FORM (COURSE STUDENTS)
DATA ((CS343 23)(CS375 37) ...(CS399 9)) )

The result of ASSERTAB is to construct a network representing the table.

DELETAB is provided to delete all or parts of a table. Although the ordinary

ASSERT, DELETE and QUERY functions work on tables, a special quantified func-

tion is provided in the following form:

(FOR QFY CLASS PARTITION OPERATION),

an example call might be:

(FOR SOME STUDENTS COURSE*TAB (IF (GR STUDENTS 5)
(PRINT COURSE STUDENTS)))

The operation can be any program in a language decided to be suitable for the

user. It is of particular importance that the operations include the capability

of constructing new tables, e.g.

(FOR SOME NAMES EMPLOYEE*TAB (IF (GR SALARY 20000)
(ASSERTAB NAME TEMP*TAB

FORM (NAME SALARY DEPT)
DATA (NAMES SALARY DEPT))))
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This wiil construct the new table, TEMP*TAB selecting NAMES, SALARY and DEPT

from the old one when entries have a salary greater than 20000.

Additional functions ASSERTEXT, DELETEXT and KEY* are provided for intro-

ducing text to the semantic networks and for retrieving bestmatching strings

from it.

- I. - - - -;
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II. Basic Structures

Semantic networks can be viewed as a representation that reduces all data

to sets of binary relations. A semantic network can be drawn as a directed

graph in which each arc represents a relation term and the two nodes* which

it connects are the arguments. Since a node can participate in many binary

relations, a node, its arcs and the nodes to which they directly connect it

comprise a set of binary relations. A simple example follows:

"Five students enrolled in CS381."

enroll student

SP AGT INSP NBR
enrolll ) STUDENTI 7 5

rH >CS381* SUP I CS381

The subscripted terms, e.g. enrolll, studentl, etc. can be seen as a special

encoding for instances of the concept to which they are in a SUP relation. The

arcs are relation names which in this example are derived from the names,

Agent, Theme, Number and Superclass. Each arc is understood to have an inverse

as follows;

SUPerclass--INSTance
AGT--AGT*
TH-- TH*
NBR--NBR*

*In fact, in our implementations, an arc connects a node to a set of nodes,

e.g. stately and graceful Goonut palm is represented as
(OALM MOD (STATELY GRACEFUL)). This proves most economical for representing

tables and texts.
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The unsubscripted concept is also in relation to other concepts; e.g. ENROLL

SUP JOIN, STUDENT SUP PERSON, CS381 SUP COURSE, etc., thus classifying the

vocabulary of the system.

The above graph can be represented also as triples which is an attractive

form at the machine implementation level.

(vNRGLLI SUP ENROLL) (CS381* SUP CS381)
(ENROLLI AGT STUDENT1) (CS381* TH* ENROLL)
(ENROLLI TH CS381*) (5 NBR* STUDENT1)
(STUDENTI SUP STUDENT)
(STUDENTl NBR 5)
(STUDENT1 AGT* ENROLL1)

The triples facilitate implementation in that they reduce any form of data to

a fixed dimension array. Their use of indirect reference is advantageous for

defining recursive and iterative inference procedures but results in signifi-

cant difficulties in terms of the number of auxiliary storage accesses that

they may imply.

Most of our work locally has been accomplished in a LISP 1.5 environment

in which the semantic networks are conveniently represented as property list

structures. A property list can be viewed as a node associa. .Z of

pairs. The first member of a pair is the name of an arc or relation and the

second is the name of the node that it connects. For the above graph or set

of triples a property list structure appears as follows:

(ENROLLl SUP ENROLL AGT STUDENT1 TH CS381*)
(STUDENTl SUP STUDENT AGT* ENROLL1 NBR 5)
(CS381* SUP CS381 TH* ENROLLl)
(ENROLL SUP JOIN INSTANS ENROLLI)

The LISP environment is additionally helpful in providing a transformation from

linear machine organization of memory to a logically organized memory in which

....... - - -- - -
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tlie names of atoms and lists point to their addresses. This list organization

represents a difficult problem when auxiliary storage is required as in a

iarge data management system.
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III. Tuples and Tables

In ordinary conventions of mathematical notation a statement such as our

example, "Five students enrolled in CS381", might be represented as the fol-

lowing data 2-tuple:

(Cs381 5).

The author of such a tuple would remember that he is talking about a course and

its enrollment of students. His understanding of the tuple can be represented

by a corresponding form 2-tuple, (COURSE STUDENTS). These two forms may be

combined into a semantic network representation: (COURSE 381 STUDENTS 5) thus

making explicit the form that is required to understand the original 2-tuple.

If he wishes to organize or present data for several courses, he may

construct a table such as the following:

TABLENAME COURSE*TAB

HEADINGS COURSE STUDENTS

CS381 5
CS382 7

Alternatively, he can present the same. information in semantic network

form.

(COURSE*TAB INSTANS (COURSE*TAB1, COURSE*TAB2))

(COURSE*TAB1 SUP COURSE*TAB COURSE CS381 STUDENTS 5)

(CORSE*TAB2 SUP COURSE*TAB COURSE CS382 STUDENTS 7)

*.'*-_
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The tablename, COURSE*TAB, is a partitioning of the semantic network that

organizes assertions about courses and students into a subnetwork that is

easily accessible by the name, COURSE*TAB. Additional specifications of the

kind of data in the partition can be associated with the tablename to

facilitate retrieval or to insure accuracy of its entries as in the following

example:

(COURSE*TAB ARCS(COURSE STUDENTS) ACCESS UNRESTRICTED

ENTRIES 2
COURSE NAME
STUDENTS(NBR LS 500))

So the node, COURSE*TAB specifies that its headings are COURSE and STUDENT,

its access is unrestricted, it has 2 entries, COURSE is a NAME and STUDENT a

NIJY4BER less than 500. The INSTANS arc as seen earlier indexes the entries.

Various ordering arcs can be provided to subset large tables into alphabetic

or numerical categories.

Interpreters for two forms of query can be provided. The first is the

standard form called a Case Relation query:

(QUERY (Y COURSE CS381 STUDENTS X))

where the argument of ASK is a partial specification of a case relation and

X is a variable that matches the value associated with the matching case

relation. The value returned by ASK is (COURSE*TAB1 COURSE CS381 STUDENTS 5).

The partial specification succeeds by finding the instances of CS381 and

discovering if any have the arc, STUDENTS. If we knew that courses were par-

titioned in COURSE*TAB, we might have asked:

(QUERY (COURSE*TAB COURSE CS381 STUDENTS X))

and retrieved the same answer by examining the instances of COURSE*TAB. The

.........
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v.luc ruturned in this case would be (COURSE*TABI COURSE CS381 STUDENTS 5).

The second general type of query is a quantified form, similar to formal

data management languages;

(FOR QFY CLASS PARTITION OPERATION)

FOR establishes an iteration where QFY specifies the number of instances de-

sired, e.g. 1,17, some, all; CLASS specifies an arc name or a function on its

values, PARTITION specifies a partition or table if any and OPERATION is a

set of procedures to be accomplished on the set that has been specified. We

might wish to ask COURSE*TAB for all courses with more than 5 students;

(FOR SOME STUDENTS COURSE*TAB (IF STUDENTS GR 5

(PRINT COURSE STUDENTS)) )

The OPERATION argument accepts a program of procedures in a data language

convenient for the user.

The interpreter must also accept Assertions and Deletions. A set of

predicates may be asserted to the network with the following command:

(ASSERT ((COURSE*TAB COURSE 375 STUDENTS 7)
(COURSE*TAB COURSE 343 STUDENTS 23)) )

The result of the ASSERT is to create INST and SUP arcs from COURSE*TAB to

COURSE*TAB3 and COURSE*TAB4, and to create the arcs COURSE, COURSE*, STUDENTS

and STUDENTS* between the data items. Convenient brief forms such as

ASSERTAB can also be provided, e.g. (ASSERTAB TABLE COURSE*TAB
FORM (COURSE STUDENTS)
DATA ((CS375 37)(343 23)) )

DELETE can accept the same forms as ASSERT and delete them from the network.
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In some applications where many small tables characterize the data,

it may prove desirable ( in order to save memory) to avoid indexing the values

of data in the tables. In this event the semantic network form of the table

is exactly the same as the argument form of ASSERTAB. For example the unin-

dexed form for COURSE*TAB appears as follows:

(COURSE*TAB FORM (COURSE STUDENTS)
DATA ((CS380 5)(CS381 7)) )

Since this is a well-formed semantic network, it may be directly Asserted.

A variation of the quantified FOR statement, FOR*, can be provided to query

unindexed tables.
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IV. Text

In its printed form a text is an ordered set of word symbols. For

retrieval purposes it is best represented as an index of Word-types and a list

of occurrances of Tokens. Consider the sentences, "Big fish eat little fish.

Little fish eat littler fish." The representation as types and tokens is

shown below.

TYPES INDEX TOKENS

1 Big (1) (1 2 3 4 2 4 2 3 5 2)
2 Fish (2,5,7,10)
3 Eat (3,8)
4 Little (4,6)
5 Littler (9)

The tokens are references to entries in the type list which for each word-

type shows a list of its occurrences as sequence numbers referring to the

string of tokens.

For retrieval from such a structure, any list of words may be taken as

a request and the Token substrings containing hits can be returned as answers

ordered by the number of hits in each substring. This is the general approach

to keyword retrieval as used in many kinds of system.

This approach is adapted easily to representation in semantic networks

almost literally as shown below:

(BIG NBR 1 TEXTI (1)) (TEXT1 SEQ (1 2 3 4 2 4 2.3 5 2))
(FISH NBR 2 TEXT1 (2 5 7 10))
(EAT NBR 3 TEXT1 (3 8))
(LITTLE NBR 4 TEXT1 (4 6))
(LITTLER NBR 5 TEXT1 (9))
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If we query with the procedure KEY* to retrieve what it said about "little

fish";

(KEY* (LITTLE FISH))

under the requirement of returning sentences as answers, both sentences would

be returned. In the process the tokens would be translated back to words. The

procedure for retrieval operates wholly on the index to determine an ordering

of the sentences in the text, then reconstructs those sentences from the token

list.

Many heuristics have been developed as variations on this simple retrieval

scheme to improve the ordering of answers. If the text is large its token list

can be subcategorized by volume, chapter, paragraph and sentence so that the

index numbers each become tuples and the search through the text string is

shortened to any extent desirable. For example, if we partition the text by

sentences marking each sentence in TEXTI with parenthesis,

1. BIG TEXTl>(l.I)

2. FISH TEXT>(1.2, 1.5 2.2 2.5)

3. EAT TEXTl>(1.3, 2.3)

4. LITTLE TEXTl>(l.4, 2.1)

5. LITTLER TEXTI (2.4)

TEXT1 SEQ>((1 2 3 4 2)(4 2 3 5 2))

we then use 2-tuples IX, 1Y as indexing numbers. If we wished to further

partition the text to chapters and paragraphs we would use a 4-tuple as an

index number:

chapter'paragraph'sentence sequence-



The network representation for text is designed to minimize storage

requirements by represc,,ting each text as a vector of tokens where each word-

type occurring in the text references the vector locations of its occurrences.

As with tuples and tables, the procedures ASSERTEXT and DELETEXT can be

defined.



V. Discussion

A core-limited prototype of the proposed system exists in LISP 1.5 on

both the CDC and DEC10 systems. As it stands it can translate English state-

ments and questions into semantic network forms. A translator is provided to

enable a user to use Kowalski's form of predicate logic notation. Our

experimentation with this system has been primarily oriented toward insuring

that the semantic network representation is logically complete and that its

proof procedures for answering questions are adequate. Tables can be directly

asserted to this system as it is and their contents can be queried.

Procedures for interpreting the quantified FOR statement are not yet

developed. Additional procedures are needed to provide for storing and

querying unprocessed text.

If a large INTERLISP system were available, with its paging control as

a disc memory manager, the prototype could deal successfully with several

million words of data. In the local environment it is limited to about

300K words for system and data and is expected to be useful primarily for

developing data structures and language interpreters.

____________________ ~ ~ . - ...
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APPENDIX 2

TOWARD A DESIGN METHODOLOGY FOR DBMS:

A SOFTWARE ENGINEERING APPROACH

by

Raymond T. Yeh and Jerry W. Baker

A design methodology for DBMS is presented. The methodology consists of

three interacting models: a model for the system structure, a hierarchical

performance evaluation model, and a model for design structure documentation,

which are developed concurrently through a top-down design process. Thus,

using this methodology, the design is evaluated and its consistency checked

during each phase of the design process. It is shown that systems designed

using this methodology are reasonably independent of their environments,

reliable, and can be easily modified. A modest example is used to illustrate

the methodology.
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tymond 1. Yeh and Jerry W. Baker

Department of Computer Science
Univeri:ty of lexas
Austin. Texas U.S.A.

A design methodology for DBMS is presented. The methodology consists of three inter-
acting models: a model for the system structure, a hierarchical performance evaluation
model, and a model for design structure documentation, which are developed concurrently
through a top-down design process. Thus, using this methodology, the design is evaluated
and its consistency checked during each phase of the design process. It is shown that
systems designed using this methodology are reasonably Independent of their environments,

reliable, and can be easily modified. A modest example is used to illustrate the method-

ology.

INTRODUCTION

The environment of a DBMS can be partitioned abstraction and, moreover, constitutes a refine-
into three categories of things: machines, data, ment of the previous (higher) level in the sense
and applications (or users). Furthermore. they that Its data abstractions are used to "implement"
are dynaic and constantly changing. Thus, it those of the previous machine.
seems reasonable to require that the design of a In order to minimize the system redesign ef-

DBMS be such that the resulting system is as fort, we believe that design must be evaluated
independent of its environment as possible so during the design process. To do so, we propose

that it can evolve along with its environment, a hierarchical performance evaluation model which
Although a significant amount of research is to be developed top-down alongside the develop-

has been dedicated to specific aspects of data ment of system structure. Its main function is to
base systems (data models, query languages, provide feedback to the designer as to which alter-
performance modeling, etc.), relatively little natives at the current level can satisfy the per-
has been accomplished in the way of integrating formance constraints. However, even with perform-
these ideas iato a design methodology which can ance evaluation provided, backtracking is inevi-
be used to systematically construct data base table. It would be very desirable to know during
systems for large classes of applications. Part backtracking why some of the previous alter-

of the reason for the lack of a design methodology natives were not chosen. Thus, a language for
for DBMS is, we believe, due to the complexity of documenting the design structure is desirable and
its environment. For example, the environment of will be discussed in a later section.
an operating system only consists of machines In summary, we will introduce a design method-
(processes) and data (resources). Since the de- ology for DBMS which allows constant eviluation ef

sign problems for a DBMS are diverse, we believe the system as the design unfolds.
that appropriate knowledge from other disciplines, DESIGN OF HIERARCHICALLY STRUCTURED DBMS
especially in software engineering, can contribute
toward a unified design methodology for DBMS. In this section we present a methodolory in

In this paper we shall describe a design which we borrow heavily from software engineering.
methodology for DBMS. fur basic philosophy is This methodology provides ior the systematic de-
that the design process can be grossly described sign, specification, and implementation of a re-

by three models: a model for the system being liable DB14S such that integrity and security con-
designed, a model for system design evaluation, straints can be automatically included and that
and a model for design structure documentation. correctness proofs can be established for the

The system structure is modeled by a set of resulting systea. Using this methodology, a DMIS
v4-l ahntract m.ichines, Hna M ,...H connected by can be described and structured In a hierarchical

n- fashion. The design is top-down and the resulting
Sset of a Implementation programs, I., Il system will consist of multiple levels - each
I . Each machine in the hierarchy represents a level being described by a self contained specifi-

cation.
"view" of the system at a particular level 

of

Abstraction, Stepwise Refinement, and DBMS Design

One of the most powerful tools in software
This research Is supported by AFSOR under contract development is abstraction. The use of abstrac-
AFOSR-77-3409 and by ARPA under contract tion Allows a designer to initially express his
N00039-77-C-0254 and by an IBM Pre-Doctoral solution to a problem in a very general term and

Yellowhip to the second author.

**This paper was invited for the VLDB hold in Tokyo, Japan, 1977.

_________ I



'ith vcy little regard for the details of Imple- program 11 (l'i'n) represents the Implementation of
L,,tation. hits initial solution may be refined that view upon the next level machine H
in a step by att p manner by gradually introducing
m,,re nnd more details of implementation. The
protess continues until the solution is finally Module Specification
expressed within the framework of some appropriate The method of module specification used in
target" language. This combination of abstraction this hierarchical approach is based upon the work

and stepwise refinement enables the designer to of Parnas 119721 and Robinson and Levitt 11977)
oveicome the problem of complexity inherent in the with slight modifications (see Baker & Yeh,119771).
construction of systems by allowing him to concen- The specification of each module defines two types
trate on the relevant aspects of his design. at any of access functions. SV and ST. SV functions
given time, without worrying about other details, return values and the set of all SV functions of a
An important result of this approach is the devel- machine is said to characterize the machine's
opment of a hierarchically Structured system abstract "state". ST functions, on the other hand.
(function abstraction) such that each level con- produce a state change in a machine. The state
sists of a number of modules (data abstractions), change which a function produces in a machine is
Thus, the system Is both horizontally and vertically defined in an EFFECTS section of the module
modular, specification. Each "effect" is an assertion

The notion of abstraction is also impor- defining the change in the value of an SV function
tant from the standpoint of protection. Through of the machine when the ST function is success-
data abstraction a designer may limit the access to fully invoked. The only observable change in the
a data object through a specified set of well- state of the machine produced by the execution of
defined operations. Likewise, by hiding the the ST function is that defined in the EFFECTS
implementation of a data abstraction from its users section.
the designer protects them from any changes which The specification of each module also includes
might occur in that implementation. a set of exception conditions each of which

We envision the design of a DBMS as a step- defines a condition about which the invoker of an
vise refinement process of functional abstraction operation must be notified. An exception condi-

- which begins with the construction of a "top- tion definition consists of a name with a formal
. level" ahstract machine, H , satisfying the parameter list and a predicate using the SV

functional requirements of some high level require- functions of the module and the formal parameters.
ments specification. This machine consists of a The specification of eoch function in the module
set data abstractions represented by formal module contains a list of exception conditions with the
specifications. Each module specification is self- parameters of the function call appropriately

- contained in the sense that it specifies the com- substituted for the formal parameters of the
plete set of operations which define the nature of exception condition list. If any predicate de-
the data abstraction. Collectively, these data fining an exception condition in the list is true
abstractions define the data model which is visible when the function is invoked, then a specified
to the user of the machine, action is taken by the system. If the exception

In the next step of the process, another condition is "fatal" and the function is of type
abstract machine, Hil, representing a "refinement" ST, then the effects specified in the function

of H is designed. Its data abstractions are chosen definition will not be observed and the user is
n appropriately notified. If the function is of

in such a way that they can "implement" those of type SV, then the value(s) returned is (are)
M . Basically, this implementation consists of a undefined. For a "non-fatal" exception condition

set of abstract programs each of which defines an a simple warning message is issued.
operation of H in terms of accesses to functions Implementation and Verification

of machine -aI. A verification process can then The implementation between two adjacent
be used to ensure that the Implementation is con- machines H1 and Hi_ 1 is the process by which thesistent with the specification of both machines data abstractions of Hi are defined In terms of

with(the Implementation and verification processes are
described In more detail in a later section). the data abstractions of H i i * More formally, if1 21,-} 1 fmduefncin

This stepwlse process of machine specification, F, " (, f
2
,.. is the set of module functions

Implementation, and verification proceeds until, at 1 1
some point, the data abstractions of th lowest for Hi then the implementation of Hi by MuiI is
level tmcline can be easily implemented on a speci- defined by
fied "target" machine, which may be the data ab- 12 k
stra'tions of somie programming language, a low-level It i ( I P 2 p
file management system, or the operations of some
appropriate hardware configuration. This design where 0 is a mapping from the states of H_ 1 to
process results in a DBMS structure consisting of the states of H and pJ is an abstract program
a hierarchy of abstract machines, or levels,

n .. connected by a set of n programs which implements the function f on machine Hi 1 .

10.n1 ,...,1 V Each machine M IHin the hierarchy The alapping function 0 has the effect of "binding"

represents a complete "view" of the DBMS at a par- each state of M to a state or set of states of
ticular level of abstraction while the corresponding HII* hat is, if S1 and S1 1 are the state sets

-, . 5



of HiI ,nd MiHIt respcctively, then the mapping output assertion is obtained by taking an EFFECTS

0 Is defined such that for every state a C S i  assertion and replacing each reference to an SV
I I I function by the instantIation of the appropriate

we have s- (a - for some state a L 1 of St1 1 . partial mapping function of 01".

The mapping function is actually constructed by Inductive assertions for pi can be taken

expressing each SV function of HI as an expression directly from the EFFECTS sections of the ST

containing the SV functions of M_. Each such operations used to construct the program. Verifi-
i-i* cation conditions can then be derived and used to

expression is referred to as a partial mapping establish the validity of these assertions. The
function and the set of all partial mapping func- verification of the output assertions then follows.

tions for Mt comprises the mpping 0i1. Design and Specification - An Example
The purpose of abstract program pi is toe pThe concepts discussed in the previous section

express the function fj of H In terms of the can perhaps be best understood by looking at a

functions of M4 Thus, the program Is constructed DB11S designed using this hierarchical approach.
i_I u A partial outline of such a system is shown in

using well-defined control constructs and the func- Tables I snd 2. Table 1 contains a brief descrip-
tion set F 1 1 . This implementation process must tion of the nature of each system module, while

be consistent with the formal specifications of Table 2 outlines the basic properties of the

M and M That Is, the following commutative different level achines.

diagram must be satisfied! Table 1. A description of the system modules.

Only a partial list is given for each level.

fi
si Level 5

UNIV - Defines operations for recording

and accessing Information about
university departments and
professors.

Level 4

* 0  
.REL - Defines the concept of a relation

through relational algebraic
operations.

INT - Specifies operations for creating
and enforcing "integrity assertions"

a j a_ which specify allowable data values
p - for relations.

Fig. 1 AUTH - Defines operations for creating and
enforcing "authorizations" which
specify allowable interactions for

where s 1 and si are states of H and si_ and users.

soi_1 are states of H I . Level 3
The verification of the implementation I RT - Defines operations for creating,

reluires a formal proof that the commutative dia- updating, and accessing logical
gram of Fig. I is satisfied for every abstract "record tables".

program p . This verification process is basically RDIR - Represents a directory of existing
record tables.

a standard inductive assertion proof (iloare,[1970])
on pi ind we, therefore, only give a brief descrip- INT - Defines tables containing information

on dabout field values for each existing
tiorn of it. 11oeever, the reader Is referred to recotd table.
Robiw,.on and levitt (1977] which contains a de-
tailed discussion of the hierarchical proof tech- TDS - Spe sies operations for creatin and
olques used in the methodology. acces~sing sets of record idcnttlfers.

Used to implement the concept of a

In general, the precondition for each abstract cursor (Astrahan (1976)).

program p1 is true because the program contains its IMAGE - Represents logical reorderings of

own mechanisms for exception handling. The output records (Astrahan (19761).

assertions for p1 are derived from the assertions IHCAT - Defines a catalog of existing images.

in the IFTCTS section of the specification for SEL - Specifics operations for creating,indt c i itntaining, and accessing partial
function f1 and from the mapping function Pi. Each indexes to record tables.

'/4,



Table I (Cont'd.) Level 2 (Cont'd.)

SLCAT - Represents a catalog of existing par- RBDX - Specifies operations for creating and

tial indexes, using directories to RBLK structures.

LNK - Defines operations for creating, main- RIDX - Represents fixed-length blocks of
taining and using logical assucLations record pointers. Used to implement
betveen records of different record the TDS, SEL, and LNK modules of
tables. Level 3.

LCAT - Represents a catalog of associations. Level I

Level 2 VP - Defines the concept of a virtual page

BTR - Defines the concept of a B-tree. space.

Used to implement the IMAGE module Level 0
of Level 3.

RBLK - Represents fixed-length blocks of Machine hardware
recorJs. Used to Implement the FT
and LNK modules of Level 3.

Table 2. A brief description of six levels in a hierarchically
structured DBMS. The actual system contains eight levels.

Hovever, for purposes of presentation, several levels vere
combined.

Concepts Hidden

Level Visible Concepts Operations y Level

5 entities (university operations corresponding logical structure of
departments, professors, to real-world transitions data
etc.), and their ("hire", "terminate", etc)
attributes and queries ("getsalary",

"get age", etc.)

relations, tuples, cursors, algebraic relational access paths, record
authorization and integrity operations, creation table structure, record
assertions and enforcement of identifiers

authorization and
integrity assertions,
cursor creation and
svquencing operations

3 record tables, records, creation, access, and record block structure,
images, partial indexes, maintenance of record implementation of access
record table associations, tables, access paths, paths
record identifier sets and record identifier

sets

2 fixed-length record and record block access, bit representation of
pointer blocks, B-trees, B-tree operations information, distribution
links between record of record block and B-trec
blocks nodes on virtual memory

paces

1 virtual page apace bit and byte extraction distrilntion of pages
and encoding In memory devices

0 primary and secondary pacing operations
memory devices



Ih( top-level michlne, ti5. represents an appll- L.evels of Abstract iu and DAMS, Design

,tl,,n vi,.w of the system. 1he UNIV module pro- We observe that the notion of levels of
vidus erationu for recording and accessing infer- abstraction translates to a natural interpretation
ration about university departments and professors. within the context of database systems. That is,
Specifically, the information represented includes it can be expected that any integrated data base

the following: will have a wide variety of users whose views of

the system and access requirements will be quite
1. the name, social security number, age different. Through the hierarchical design ap-

salary, rank, and department of all proach different levels of design may be con-
professors employed by the universityand structed to accommodate this variety of views and

2. the chairman, number of professors, and access requirements (Fig. 2).

average salary for each universit) depart- The design of the system shown in Tables I and

ent. 2 illustrates how different users may be accom-
modated through hierarchical design. At the

The ST operations of the module are semanti- highest level of abstraction, for example, is the
sally meaningful - each corresponding to a real casual user who is concerned primarily with acces-
world transition. They include "hire", "terminate", sing the information relevant to his application
"promote". "raise salary", and "changechairman". with as little trouble as possible. He is uncon-
1he SV functions of the module include "get salary" cerned about efficiency and organizational
"getchairman", and "get rank". At this level of properties of the data and, therefore, is provided
interaction a user is well-protected from organi- with a set of high-level, semantically meaningful
zational changes in the database aystem because no operations which hide such details.
physical (access paths, storage structures, etc.)
or logical (relations, etc.) structures are visible.
Rather, the user is aware only of very abstract EXTERNAL
relationships and transitions which may occur In USER
his application.

The operations of the UNIV module are imple- M
mented on the next level machine, HM, which repre- E.
sents a relational algebrr view of the database
system. The REL module, for example, defines the USER 0

concept of a relation in terms of relational alge- I
braic operations while the RDIR module represents a

relation directory which contains information about
all existing relations. The two other modules 0 0 0 n-1
shown, 1NT and AUTH, relate to the concepts of
integrity and authorization end are described in n-1
,more detail in a later section. We note that at

this level of interaction the concept of an access 0 "I
path is completely hidden from the user. That is,
the operations at this level provide no mechanisms
for defining, deleting, or using any type of access
path.

At the level of machine M 3 the DBMS represents MTaret Machine M 0

-a somewhat different view. A user of this level
can create and manipulate logical record tables Fig. 2. A hierarchy of formally specified

(RT module) and a directory (RDIR module) to record machines showing modularity. Levels may

information about existing record tables. Also, be constructed to accomurodate the different

several modules - IMAGE, LINK, and SELECTOR - make views required by various users.
it possible to create fast access paths to records
-of existing record tables. The implementation of The privileged programmer, while still being
NI4 by H3, of course, consists of programs which concerned with the information relevant to his

implement the module functions of H4 in terms of application, Is al!;o concerned with the efficiency
of his interactio; with the system. Therefore,

the modnle functions of ti3. Thus, for example, he may be willing to sacrifice a certain oriount of

the rrltionil al'ebrac operations of the REI data independence for increased efficiency. A

rod,,lc oTe i-'plrncnted in terms of record table privileged progratver may therefore require access
operations and calls to the appropriate functions to levels 3 or 4.

of the fast acress path modules. The application programmer's Job Is to create
As the DP21N is viewed at lover levels-the data interfaces for new applications when they arise.

abstractions become more "physically" oriented un- This may require a modification to the top-level
til the level of the machine hardware is reached, machine or possibly the specification of new
Hissing is the sharp transition from logical to machines to be Imnplemented on existing levels.

phy!cical representation found in many systems. The application ptogrammcr would most likely
Rather, th'ree is a gradual progression from a very require interaction with levels 3, 4 and 5.
Pbstract view tn machine hardware occurring in a
reqnence of discrete steps.

.... .. .. ..... .. . ... .. . .. .. .. .. ... ,. ... .. ..'. .. . . .. . . . . ... . . . . , _ . . .. . t . - _ ,, . ..



'he oCren path progranmer has the task of conditions in the K1, module can be used to ensure
ctr 1) (i t access paths for the system. Like that any update function which uould violate de-
the i'li-lication pro-rarimer he is not interested In fined integrity assertions cannot be executed.
the 171in'at ion content of the system. but rather ror example, the function
in defining access paths which enhance the effi-
ciency of other users. The access path programmer insert tupler,R)
would thus interact at level 3. of the REL module has the effect of inserting

Finally, the storage structure development tuple r into relation R. One fatal exception
proprtarr interacts with the system at level 2. condition for this function is
His task Is to ensre that logical access paths ADAL(rR)
are implemented as efficiently as possible. ATV

Our mention of the different levels of users which is defined as
is neither intended to be exhaustive or even the
best possible. We merely wish to emphasize that BADTVAL(t,T): 3i(l.I<ncomp(t))
the hirrarchical design approach can be used to (check-val(domain(IT),Ttt(i))-
construct levels which correspond directly to the falsel
views of the system desired by different types of where ncomp(t) returns the number of components
users and that this is a useful way of partitioning of tuple t, t(i) is the ith component of tuple t,
the different interfaces required. We do not mean and domain(i,T) returns the name of the ith domain
to imply, however, that every level in a hierarch- of T. Also, check val(d,S,v) is a boolean
Ically structured system will correspond to a type function of INT which returns true if v is an
of user. Different levels may in fact be intro- acceptable value for domain d of relation S and
duced during the design process merely as an aid false otherwise. This specification indicates
to the designer himself. that the operation insert tuple(r,R) cannot be

Design of Authorization and Integrity Mechanisms executed if the tuple r contains data values
which are non-allowed by any defined integrity

Protecting a data base from semantic errors assertions. Moreover, the verification process
and from use by unauthorized persons is, of course, ensures that the abstract program Implementing
an important function of any DBMS. The develop- the insert tuple function satisfies this specifi-
meat of integrity and authorization subsystems, cation.
then, is an integral part of the DBMS design Protecting data objects from unauthorized use
process. Through the use of exception conditions can be handled in a similar manner. For example,
the hierarchical design approach provides a reliable the AUrH module enables the creation of "authori-
mechanism for handling such problems. Exception zations" which define the allowed accessed to
conditions provide a means by which the designer. level 4 data objects. Also, an SV function can
ran specify that a function cannot be successfully be used to check if a user has a certain access
Invoked -when certain integrity or authorization to a data object. Each module function of level 4
conditions are not satisfied, contains an exception condition which prevents

Consider, for example, the "hire" function of unauthorized acces, from occurring. For example,
the UNIV module of level 5. This function requires, the insert tuple(r,R) function has the exception
among other things, the specification of values for condition
the parameters rank and salary. The function has AUTH(uidR,'ISERT)
a fatal exception condition

BAD SAI.ARY(salary,rank) which is defined as

which Is defined as NOAUTH(id,Sol): checkauth(idSop)=falsc

BAD SALAR(s,r): where old Is the Identification number of the user

case r of invoking the function and chockauth(id,Sop) is

"assistant professor": s>lSOOO; a boolcan function of AUTH which returns tre If
"associate professor": s:24000; user "id" has "op" access to relation S. Again,
"professor": s>40000; the verification process can be used to ensure

end. that the implementation of insert_tuple satisfies
this specification.

Therefore, if the "hire" function were invoked with
salary l9500 and rankm"assistant professor" then An Assessment of the Methodology
the effects of the function (as stated in the The methodolog5 presented in this section is
,odue riccificatcos) would not be observed. That but a snall step in the devclopricnt of a deqgn
is, thc function u'ould have no effect on the state theory for DBMS. This approach has several
of machine 115. advantages over ad hoc methods currently used.

The approach Is similar at lower levels of the We summarize a few of the most important ones here.
desin. *he design of the INT module, for example, 1 Rlibiltfflql
provides for operations which enable the creation
of "integrity assertions" which define the semantic The multi-level design process enables the
corrertt.'ss of existing relations. Mloreover, the designer to concentrate on the relevant
moetule contains certain SV functions which can be aspects of cach level without worrying
used to defermInt if a particular update operntinn about impltmntntion details. Also,
would violate defined integrity assertions. This because the implementation occurs in small
module combined with the appropriate exception steps the probability of desipn errors is

reduced.

"(r, €
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2. K.,! hine, A piia.tL nd fata 6. Fornil _pcclflratlon of Fxception
Ind cc.c nle Cond it ions

1he horiyontnl and vertical modularity The hierarchical nature of the system
provided by this approach to DBIS design structure enables the specification of
enhances machine, application. and data exception conditions at the most
Independence of a system. Machine inde- appropriate level of abstraction. As

pendence is enhanced because the Infor- a result, integrity and security checks
mation hiding properties of each level can be easily specified.
limit the effects of modifications to

hardware architecture. Vertical modu- There are. of course, many difficult problems
larity provides a degree of application remaining to be tackled In order for the method-
Independence because the addition and ology to be effective. We will point out a few
deletion of applications can be accom- here.
modated throu'h changes In columns
(modules and their vertical refine- 1. The methodology needs to be extended to

ments) but not the whole system. incorporate the concept of multiple users
It should also be clear that each and concurrent access.

level of a hierarchically structured 2. There needs to be additional design

system provides a measure of data tools for testing formal specification
independence. That Is, each level tends toothatoa tesig forasspedthatio
to hide from its users tae organizational so that a desiger is reassured that a
properties of lower levels. Providing a lengthy formal statement is "consistent"
hierarchical structure can thus be useful with his intuition.

in protecting the system itself from the 3. Development of hierarchical performance

effects of internal modifications, models for design evaluation. The per-

3. Formal Consistency Proofs formance modeling subsystem not only
should be able to predict the gross

The hierarchical nature of the implemen- system performance characteristic at
tation reduces the verification of the each level, but should also be able to
entire system into a sequence of the provide guidelines for structuring data

hierarchical proofs designed to insure bases which can best fit the system. An
the consistency of the specification and informal approach will be presented in a
impleme tation of adjacent levels. Be- later section.

cause the verification proceeds in
sequencL with the design process, 4. There is a great need for methods and

Implementation errors can be detected automatic aids to document the design
at the same level in which they are structure. This is important for
introduced. generation and evaluation of alternative

designs. We will present an approach in
4. Localized Effects of Modification the next section.

A database system is a dynamic entity which DESIGN STRUCTURE DOCUNTATION
tequires constant modification and mainte-
nance. Even after the system is installed The role of specifications in the development
and operating, frequent modifications may of large software systems is certainly an Important
be required to correct programming errors one. Specifications are used not only is a m-n,.
or to increase system efficiency. Like- of communication between members of th dcqizn
wise, design changes may be necessary to team, but also serve to enhance the undet.-ta'fi1-
adapt the system to changing user require- bility of the system. This is Important 'oth f-r
ments or to a new operating environment, users of the syst'm and for future design team,
If the system is poorly designed then the which must perform medifications.

impact of such modifications may be so The previous sections have described certain
great that maintenance is a significant "local" specifications which are required in the

part of the overall development cost. hierarchical design approach - module specfilitfon,
At each level of a hierarchically abstract programs, and mapping functions. Ea-h
structured, modular system, an abstract such specification describes in detail the nature
con':ept is realized by a formally speei- of a very sonill part of the total system. Yet
flied todule. Because the module structures these specifications are inadequate for purpon,-

hide all aspects of the implementation, of understanding rhe system as a whole or for
modifying a machine design or Implemen- explaining why a particular design was developed.
tntion requires only localized changes There exists the need, then, to document the
In th, system. system design and the design process at a much

5. Undcrstandabllit higher level of abstraction. Such documu ntation
would suppress (etails - concentrating rather on

The hierarchical design process allows the the global properties of the system design and the
designer to understand the operation of design structure.
the system at each level of abstraction The following sections briefly describe a
before proceeding with the implementation. Sy.......t n ..nun. (Stl,) which cnn he used to

document the design process and record Information

M. -,
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about the dciqluti-m.aking prncesses that occur sini;Is componvi-n has been constructed whicih
dutiug it. The features of the SUL described encompasses, directly or indirectly. every module
in the following sections include methods for. of the initial set. This final component specifi-

cation is then the startin, point for the develop-
1. specifying the design alternatives at ment of possible alternatives for level i-1.

each level, The process of component construction and
2. specifying the hierarchical relationships alternative design formation for level 3 of

between system modules, and Table I can be illustrated by the following example.
3. specifying'the structure of each system Cl: (REQ,({HACE,lMlCAT))

level. C2: (RQ,(LPIX,LCAT))

C3: (REQ,(SE.,SLCAT))

Specification of Alternative Designs C4: (REQ, [INDEXsINDCAT))
C5: (ALT,{CI,C4')

One aspect of the hierarchical design approach C6: (OP,(C2,C3.C5))
which has yet to be emphasized is that of developing C7: (REQ,(RDjR.ENTRTTDSC6))
alternative designs at each level. In general a This specification indicates, among other
module at level i may be implemented in many dif- things, that
ferent w'ays and, thercfore, at level i-i the
designer may specify various alternative modules 1. components RDIR, FNT, RT, TDS, and C6
to accomplish this task. There exists the need, lust he in every alternative design for
then, to document exactly how the various alter- level J,
native modules for implementing the data abstrac- 2. any subset of (C2,C3,C5) may be present
tions of level i may be combined to form designs in a design for level 3 (because C6 is
for level i-l. The designer may then choose the of type "OP").
most appropriate alternative design as part of the
system (based perhaps upon expected performance). 3. If C5 is chosen to be in an alternative

Using the SVL the designer may accomplish this design then exactly one of Cl or C4 is
task of specifying the various alternatives through to be in the design, and
a process of constructing level components. The 4. If Cl Is chosen to be in the design then
syntax of component specification is defined both IAIAGE and IMCAT must be in the
formally in the following BNF grammar: design.

<compname) : : C<integer> Each component of type "OP" or type "ALT"
<modlist> : <modname> I <modname>,<modlist, represents a decirion for the designer regarding
<complist> ::= <compname> I the structure of the alternative design. Different

<compname>,<complist> alternative designs may thus be formed by following
<compdef> ::-<modlist> i <complist> I .different decision.pathways.

<compdef>,<modlist> I
<compdef>,<complist> -. Specification of Hierarchical Relationships

<ctypc> ::- REQ I ALT I OPT
<cspec> <compnamo>: (<ctype>,[<compdef>}) The next important aspect of the SML is that

of specifying c.ap5.biiLty relationships between
The simplest type of level component is a single modules of adjacent levels. The:ce capability
module. However, more complex components can be relationships define the hierarchy which exist,
conitructed by combining modules or previously between the different trodules of tie syst-m.
defined components. Three types of relationships are of lnt,'r,"t.

Associated with each component constructed The has acces'telationship indicate
, 

thi
Is a componTent type specification (<ctype>) which ways in which a module m can obtain access; to
Indir-iteg h:w 'members of the component may be instances of a tnodule m'. We distinguish between
comtbined or used in any alternative design. The three different types of allowable access:
meanings of the three component types are as
followq: 1. Creation access (C) - m obtains access

to instances of m' by virtue of it,
I. PFQ - each member of the component must ability to invoke operations to create

be included in any design. such instances.

2. ALT - exactly one member of the component 2. Indirect access (1) - m obtains access
mist be I hided in any design. to in,;tanres of m' indirectly by using

3. OPT - exactly one subset of the tiembers another module m''.
of th' comiponent must be present in any •3. Clobal access (G) - m is "aware" of every
design (this includes the null set). instance of m' or Is provided with l, it-

Forr,.ti-n of alternative designs begins when mation from a higher level module which

the driFrcr hi, dcv'cloped all alternative modules enables it to access inqtances of m'
fr ir0;J.T,'rii, e,rh data abstlaction of level I. *without the need to use other moduleq.
T , ., I .- r t , begins to construct a hierarchy The tuses relationship indicates the means by
,,f r ,- - e.rih componient In the hierarchy which a modtiv ri nay use instances of a module mi'
i- e'a . c,-rVe ive of lower level components. to which it has access. We also distinguish

or n of rat'posit ion continues until a between three different types of trsage:

"/ . f
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1. Read (R) - m can invoke the SV operations
of m'.

2. Mt (W) - , can invoke the ST operations 0
of at' to modify instances in Some way.

3. Create (C) - at Can use ST operations to
create instances of a'.

The prnvyide relationship Indicates what types
of module Instances. a module m may obtain by
accessing another module m'.

Formally, a capability set for levels i and
i-i is defined as a triple (&,,U,P) where A. U, and
P are sets of triples defineu as follows:

A: (Ala tM1 X (C,G,I}I) X m

U: ulu r i X (R,W,C) X Hi It M M

P: (pip EM I X M i_ 1 X HI l -_1 1
Fig. 3 illustrates the capability relation- Fig. 3c. The provides relationship betweenships which exist between some modules of levels 3, tome modules of Table 1.

4 and 5 of the system design of Table 1.

A specification of capability relationships
can be useful in enforcing restrictions on com-
munication between modules. It can also aid the
designer in assessing the impact of modifications
to system design.

Specification of Level Structure

The final aspect of the SDL which we wish to
mention is that of specifying machine structure.
It may be useful to allow a limited hierarchy
within a particular level and hence the SDLenables the designer to specify the global proper-
ties of such s hierarchy. The level structure
apecification of the SOL indicates, for any level
design, the modules which form the level interfaceR? PIDIR TDS tMCAT MArt (those visible to users of the level), those
modules which are hidden (from users of the level),g. 3and those modules which must use the interface ofFig. 3a. The has access relationship between the next level (i.e., those modules which nre notseveral modules of Table 1. The completely implemented vithin the level). The

types of access are Global (G), level structure specification also defincq theIndirect (1), and Creation (C) . hierarchical relationships which exist between
modules of the level..

Assessment

The development of SOL presented here is
votivoited by the need of providing a tool to
designers to specify global or macro propertie3

• of various system designs. It should be emphasized
however, that SDL Is meant to be an integral pirtt of the design process, and not merely a spt-rifi-
cation tool to he ured "after the fact". While
much of our motivition for developing the SDL Isthe some as th;ot behind the tliodule Interconnection1 ULangunge (MIL) of DeReer and Kron [1976), there

are some fundamental differences:

TO$ IDZ ?M05 IT MW~E 1. The till, is concerntd with documentinp
iystem designs bitt not the whole design
structure (or process). Thus, it does
not support the notions of alternativeFig. 3b. The tses relationship between several designs, backtracking, etc.modules of Table 1. The types of

usage are Read (R), Write (W), and
Create (C).

, #, ,/ * .



2. In tilL, a module is a small program. In parameters. Desipgn paraecters arc variables whost-
SDIl., we consider a module to be the values may be changed by the designer to determine
functional specification of a resource the effects of various database designs nnd imple-
type or ahstract data type. mentations upon the performance of the system.

3. Our module Interconnections are based Scenario parameters, however, represent on expected

strictly upon the "uses" coocept of usage of the Nystem in terms of the operations and
rarns [u9on he tss oet the cas data objects of level I. Their values are deter-
arin 119741 while this Is not the case mined by the values of parameters of P according

In 111L. +1
Much, of course, needs to be done in order to a performance parameter mapping set T Each

for SDL to be a truly useful tool. Extension to mapping in this sot defines a performance parameter
include various concepts, such as concurrency, of P as a function of the parameters of P i A
locking, backtracking, etc., is necessary. Auto- I

matic aids ill be needed for this tool to be set of values for the scenario parameters of level

practical. i is called a scenario for level 1.
The values of scenario parameters of P aren

HIERARCHICAL PEPXORHANCE EVALUATION determined by an .applicaton scenario supplied as
part of the high level requirements specifications.

The success or failure of any DBMS, of course, The application scenario is a statement of the
depends greatly upon the level of performance which expected use of the DBMS in terms of the operations
the system achieves during actual operation. Based and structures of machine M . The requirementsa
upon the results of current resear:h efforts, specification also contains a performance assertion
however, it would seem that our approaches to spich specifies the level of performance expected

performance evaluation are somewhat less than w h sef the ve ero . t ed

satisfactory. This section contains a very general fo h ytmfrtegvnseai.Ti
performance assertion, by its structure, will in-description of a performance evaluation technique dicate the measure to be used in analyzing system

which can be used with the hierarchical design performance. Various performance measures might
approach and which seems to have several advantages include:
over current performance evaluation procedures.
This technique involves the construction of a 1. mean response time for a given load,
hierarchical perfor",nce evaluation model. The 2. expected total execution time for a
purpose of this model is two-fold: specified mix of operations,

1. to provide the designer with feedback 3. total storage requirements, or
at each step of the design process as
to the performance characteristics of 4. a suitably weighted mixture of the above.
his design, and The specification of this performance assertion

2. to provide a basis for choosing between epables the designer to construct a cost function,
alternative designs at each level. Ga, for Hn using the parameters of Pn . This cost

In this approach the designer develops the function may be used by the designer to estimate
PtIS design and evaluation model in parallel - the the performance characteristics of M
evaluation model being constructed so that it
represents the relevant performance aspects of Construction of the Evaluation Model
the current DBMS design. The evaluation model
provides constant feedback to the designer at all The construction of the evaluation m,,del pro-
levels of design as to the performance character- ceeds top-down wIth the design of the DSH1P. After
istics of the system. Through constant interaction the design of o michine at level n-I and the cor-
betw-een designer, the DBHS design, and the evalu- responding evalation rodel parameter !tot rn,
atins model, it is hoped that a reasonably efficient it in necessary to construct the mapping ret T
system can be developed with a minimum of back- n
tracking and redesign. Those mappings of T which correspond to prarwters

n

Evaluation Model Structure defining abstract data structure characteristics
can be easily constructed from the mapping function

The structure of a hierarchical evaluation of the Implementation I n . flowever. Tn must also
model reflects that of the DBMS desiFn itself. contain mappings :hich define the probbility (or
Cortespordtig to tho ith level is a set of frequency) of acc-ss of the operations of H_ 1pro manc parlocters, el' 'hich represents the as a function of the probability (or frequency) of

relevant perfoimance aspects of the machine at that access of operations of 1 n
level. .ita structure prameters represent infer- These mappine.s can be constructed using a
station about thc abstrnct data objects of the
level (e. ., number of relations, average number tcnie ortef of piorof ecods er loc, ec.) Whle uo~tio p*ra- manes properties of programs which is based on
of records per block, etc.). While function the method of inductive assertions (Wegbret [ln761.
meters charactcrize the operations of M in terms In this approach tn Input assertion defines the

of expected execution speed and expected frequency probability distribution of the input data to a
or prolability of access. Parameters may also be prorrnm. From this input assertion various
clansifird rn desi_ln parameters or scenario Inductive assertions describing, the distribut nti

... .. . "_ _ -, _ .



of data at various points in the program are
di~ i I ved. Verificat ion conditions are then con-
stticted which enable the proof of the inductive

assertions. It tH then possible to derive
branchig probabilities of various program state- "4

ments and the expected mean and maximum number of

loop Iterations for all loops In the program. ThiaesT
in turn, yields the expected mean and maximum
number of executrons of eoch operation in the pro-
grwa text given that the input data is correctly 3

described by the input assertion.
Applying thin technique to the abstract is

proerami of In enables the derivation of the Kr

necessary parameter mappings of Tn.  The input

assertions for these programs can be derived from *

the application scenario of the requirements specl- L
fication. It is then possible to compute the
expected mean or maximum number of calls to each tt
operation of a for each call to a given operation I

of Mo. A set of equations can then be derived, -

each of which expresses the expected probability (or Fig. 4. A hierarchical DBMS design and the
frequency) of access of each operation of a_ I correspondingly structured performance

as a function of the expected probability (or fre- evaluation model. Unlabeled nodes re-

quency) of access to the operations of Nn present unused alternative designs.
n.

The application scenario, which is defined in
terms of level n structures and operations, can over many levels. Hence the designer may

thus be "mapped dowm" to level n-1 via the mapping deal with these issues as they occur in

set T to provide a scenario for the system in the natural hierarchy of design. The
n hierarchical structure of the model

terms of level n-I structures and operations. The should thus facilitate its use and under-
designer may then construct a cost function, Cn_1 standing.

for this level to obtain a more accurate estimate 2. Flexibility
of system performance. By varying the design para-
meters of Pn- the designer may derive a system The designer can model each level designI in as much detail as desired. Moreover,.

configuration which yields a reasonable cost func- the approach does not limit the designer
tion value and thus determine if the design is to models of specific'architectures -

capable of satisfying the performance assertion. models for any alternative design may be
Alternative designs at level n-1 may be developed.

treated the same way. That is, cost functions may
be constructed and evaluated for each alternative. 3. Immediate Feedback

This information may then be used by the designer At each level the designer receives feed-
as a basis for deciding which design path(s) to back frcm the evaluation model. This,
follow., hopefully, can limit the amount of

The process of evaluation is repeated at each redesign and backtracking which in
level of the design with the uncertainty of the necessary.

evaluation model results diminishing at lower levels.

he deqigner may use the information from the 4. Data Base Design

evaluation model at any level as a basis for back- The evaluation model used for DBIS design

tracking to a previous level and following a new may be used to facilitate the data base

desigrn path. Likewise, the information may allow design. The process would be top-down.
the designer to choose one (or more) design paths At each level the cost function would be

to follow from a set of alternatives. The end used to determine a performance-effective
result of thin de! ign/evaluation process is a tree- data base structure for that level.
Ilke structure of machine designs and a correspond-
ingly structured hierarchical evaluation model CONCLUDING RtNARKS
(Fig. 4).

The methodology presented in the previous
Assessment sections is, of course, a first attempt toward n

comprehensive approach to design problems. We
The proposed method of performance evaluation have assessed the three models In the methodology

seemn to have several advantages over current at the end of appropriate sections. However, one

approaches: ' point that should be stressed is that the method-

1. nderrtandabillt1  ology provides for the development of a fq iyof
.dete1 i rather than a single design. Such a

Performance related issues are distributed dociveatation will certainly be of Immense help
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APPENDIX 3

Dan Chester

The specifications in this appendix are for a relational data base system

that stores explicit relation on sequential files such as tapes. The time to

retrieve the n-tuples in an implicit relation is expected to grow at a rate

that is much less than N2 , where N is the number of n-tuples that can be formed

from the individuals named in the data base.

The first specification is a function module modelling the whole data

base system. It exhibits the basic behavior of the system without making

commitments to performance aspects. Each function is defined by an expression

in the following format:

function: <function name> <argument pattern> - <value pattern>

effects:

<statement>

<statement>

The effect statements are optional. When present the function is computed

by making the statements true and returning the value indicated by the <value

pattern>.
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module: DBS

procedure: insert (R(X(l),... ,X(N)))
definition:

include (R,(X(l) .... X(N)))
for I - 1 to N step 1 do
increment ("universe", X(I))

procedure: remove (R(X(l),...,X(N)))~definition:
exclude (R,(X(l),...,X(N)))

procedure: define (R(X(l),...X(N)),Y)
definition:

include ("definitions:,(R,(X(1),.. .X(N)),Y))
include ("defined",R)

procedure: undefine (R)
definition:

let X = find ("definition",l,R)
exclude ("definition",X)
exclude ("defined",R)

procedure: list (R)
definition:

let X = relations (R)
while X # nil do

begin
makefile (head (X))
let X - tail CX)
end

print (R)

procedure: relations (R)
definition:

if find ("defined",O,R) then
begin
let Z - find ("definition",l,R)
let (R,X,Y)=Z
if let S(W(l),...W(N)) - Y then
return append (relations (S),(R))
else
if let not S(W(1),. ,W(N)) = Y then
return appenc (relations (S),(R))

else
if let S(W(l),...,W(N)) and T(V(1),...,V(M)) Y Y
then
return append (rela:ions(S), append (relations(R),(Y))

end

- *



procedure: makefile (R)

definition:
if find ("defined",OR) then
begin
let Z - find ("definition",l,R)
let (R,X,Y) - Z

if let S(W(l),... ,W(M)) - Y then
begin
erase (R)
project (R,X,S,(W(l),...W(M)))

end

else if let not (S(W(l),...,W(M)) - Y then
begin
erase (R)
complement (R,X,S,(W(l),...,W(M)))

end
else if let S(W(l),...,W(M)) and T(V(1),...,V(N)) - Y
then

begin
erase (R)
join (R,X,S,(W(l),...,W(N)),T,(V(1),...,V(N)))

end

procedure: find (X,I,Y)

definition:
rewind (X)
repeat
let Z - next (X)
until
Z = nil or

(I = 0 AND Z - Y) or
return Z

procedure: increment (XY)
definition:

let Z - find (Xl,Y)
if Z - nil then begin include (X,(Y,1))
else

begin
let (Y,M) = Z
let N - M + 1
replace (X,(Y,N))

end

procedure: decrement (X,Y)
definition:

let Z - find (Xl,Y)
if Z # nil then
begin
let (Y,M) - Z
let N - M - 1
if N - 0 then begin exclude (X,(Y,M))
else replace (X,(Y,N))

end

IM



procedure: include (X,Y'
defink,*tion:

rewind WX
reOpeat
let Z =next (X)
until
Z =nil or
Z y
if Z -nil then extend (XY)

procedure: exclude (X,Y)
definition:

let Z = "time"
erase (Z)
rewind (Z)
rewind (X)
reopeat
include (Z,next (X))
until pointer WX) nil

erase CX
rename (X,Z)

procedure: project (R,X,S,W)
definition:

rewind (S)
repeat
let Z =next (S)
if Z 0 nil then
include (R,bind (Z,W,X))
until Z = nil
sort CR,X,X)

procedure: complement (R,X,S,W)
definition:

let V = "time"
erase (V)
project CV,X,S,W)
rewind (V)
startgen (X)
repeat
let Z = next (V)
repeat
leL U = nextgen MX
if U 0 nil and (Z -nil or U -Z)

then include (R,U)
until U-nil or UiZ
until Z - nil



procedure: join (RXSWTV)
definition:

let Z = common (W,V)
sort (X,W,Z)
sort (T,V,Z)
rewind (S)

rewind (T)

erase (R)
let Si - next (S)
let TI - next (T)
repeac
if less (bind (Sl,WZ),bind (Tl,VZ))

then let Si - next (S)
else if bind (SI,WZ) = bind (Tl,VZ)

then
begin
erase(S2)
let S3 = Si
erase (T2)
let T3 = T1
repeat
include (S2,S3)
let S3 

= next (S)

until S3 = nil or (bind (Sl,W,Z) bind (S3,W,Z))

repeat
include (T2,T3)
let T3 = next (T)
until T3 = nil or bind (Tl,V,Z) bind (T3,VZ)

let S1 = S3
let Ti - T3
rewind (S2)
repeat
let S3 = next (S2)
rewind(T3)
repeat
let T3 . next (T2)
include (R, bind (append (S3,T3), append (W,V),X))

until T3 - nil
until S3 = nil

end
until Si = nil or TI nil

sort (R,X,X)

"'"~- -- - Zia z 
- l| - l lii .. . - *. .. . . . . ..



procedure: sort (R,X,Y)

definition:
let S = "temp"
let T - "temp2"
ict N 1
repeat

rewind (r)

erase (S)
repeat

let J - 1

erase T
repeat
include (T,next (R))

J = J+ 1
until J > N or pointer (R) - nil

if J >N then begin

rewind (T)
let I - '

repeat

let W - next (T)

let V - next (R)

repeat
if W = V then let W - next (T)

else if bind (W,X,Y) < bind (V,X,Y)

then begin
include (S,W,)

W = next (T)

end
else begin
include (S,V,)

V = next (R)
end
I=I+l
until V = nil or W - nil

if W # then

repeat
include (S,W)

W = next (T)
I =I +1
until W = nil
if I < 2N and V # Onil then
repeat
include (S,V)
V = next (R)
I=I+1

until I > 2N or V - nil

until V - nil
rename (R,S)

let N - 2N
end
until J< N



1Iouu.: f iles

function: file (x) y

EULICtiOfl: pointer (X) = Y

fuliction:- rewint (X) nil
effect: pointer (X) ='file' (X).

runctio0n: next WX y
cffect:

,or some Z(l),.. .,Z(N) such that
, pointer'(X) (Y,Z(1),...Z(N)):
pointer MX (z(l),-..,z(N)).

function: erase (R) =nil
ef fect:

file (R) = nil.
pointer (R) = nil.

function: replace (X,Y,) = nil
effect:

for some Z(l),...,Z(G4),I such that
'file' (X) -(Z(1),...,Z(M)) and
'pointer' MX) (Z(I),. ...Z(M)):
file Wx = (Z(l),.. ,Z(I-L),Y,Z(I+1),. ..Z(M)) and
pointer (X)=(Y,Z(1Il),.. .Z(M)).

function: extend (XY,)= nil
effect:

if 'pointer' (X) = nil then
-or some Z(l),.. .,Z(M) such that
' file' (Y) (()..ZM)
file (X) (()..ZM,)

funcLjon: rename (X,Y) = nil
effect:

file(X) 'file'(Y).

function: current (X) = Y

function: append ((X('l), ...,)X(M)),YWl),... )Y(-')))=

.Unction: head ((X(l),...,X(N))) X(l)

function: tail ((~)..XN)-(X(2),...X(N))
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function: bind ((X(l), ... X(K)),
(Y (1) .... Y(M)),

effect:
for all I,J such that I < I, J < N:
if Y(I) = Z (T) then X(I) - U(J) and
if Y(I) = Y(J) then X(I) X (J).

function: startgen ((X(l),...,X(N))) - rilu
effect:

for some Y(l),...,Y(N) such that
for all I such that 1 < I <N:
Y(I) = Y(I + 1);:
for some Z(1),...,Z(M) such that
'oblist' - (Z(l) .... Z(M)):

for all I such that 1 < I < M:
Y (1) <S Z (I); ;

current (X(l),...,X(N)) = (Y(l),...,Y(N))

function: nextgen ((X(1),. ..,X(N)))-- (Y(1),...,Y(N))
effect:

for some Z(1),...,Z(N) such that
'current' (X(l),...,X(N)) = (Z(1)...,ECN)):
current (X(l),...,(Y(l),...,Y(N)) and
for some I such that 1 < I < N:
for all J such that 1 < J <I:
A(J) = Y(J);
for some W(l),...,W(M) such that
oblist - (W(1),...,W(M)):
for all J such that I <J < N:
for all 1 such 1 < 1 <M:
Y (J)<W (K) ;
for some i such that 1 < 1< < M:
Y(J) = W(K);
for all J such that 1 < J < M:
Y(I) < W(J)
Z(I) <Y(I).

function: common ((X(l),...,X(M)),
(Y(1),....Y(N)))= (Z(1), ... ,Z(l<))

effect:
for all I such that i < I < M:
if for some J such that 1 < J < M;

(i) = Y(J); then

for some J such that 1 <'j <l
X(I) = ZJ;
for all I such that 1 < I < 1<:
for some J,H such that 1 < J < M and
1 < H < N: Z(I)-X(J) and Z(I)-Y(H);
for all J such that 1 < J < tk and I J:
z(I)#Z(J).

-- r
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.unction: oblist -X

function: tooblist (X) - nil
effect:

for some Y(l),...,Y(N) such that
'oblist' = (Y(l),.. .,Y(N)):

oblist = (X,Y(l),...,Y(N)).

function: fromoblist (X) =nil
effect:

for some Y(l),...,Y(N),I such that
'oblist' = Y1,.,l)XY(1,.,(N :

obliAst -(YGl) ....,y(0)

IL -- A



APPENDIX 4

A METHOD FOR CONTROL OF THE

INTERACTION OF CONCURRENT PROCESSES

by

M. H. Conner

It is the objective of this research to explore a method for controlling

the interaction of concurrently executing processes. The nature of my approach

is to observe that processes exhibit an external behavior in the form of calls

to operations to shared data objects. My basic premise is that by placing

various external controls on this behavior one can usefully control the inter-

action of concurrent processes. I examine this premise by giving a model of

computation in which the external behavior of processes is well defined.

I then introduce the notion of behavior controllers to constrain the external

behavior of processes.
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In the following, I present a model of computation which I call the

structured environment. I chose this name since it reflects my desire to

definc a model which is both sufficiently and appropriately structured for

rigorous identification of the interaction between control and data. As

the name "structured environment" connotes, it is my intention to incorporate

several of the notions associated with "structured" programming. Namely, the

model incorporates the notions of one entry/one exit control structures and

abstract data objects.

In order to motivate some of the concepts used in the structured environ-

ment model, I present the following informal analysis of a Turing machine.

Even the most casual analysis of a Turing machine must note its decom-

position into two primary parts. Namely, a Turing machine consists of a

finite state control (or control part) and a tape (or data part). As soon as

this decomposition is noted, it is reasonable to consider how these parts

interact. At first glance one might say that the parts interact via the

positioning and writing operations which the finite state control causes to

be performed on the tape. In fact, this is sufficient to describe the

mechanism by which the tape is modified. However, these operations do not

describe the mechanism by which the finite state control receives information

from the tape. Typically, this interaction is described by specifying that

the domain of the finite state control's state transition function includes the

value of the symbol currently under that tape head. Let me propose a slightly

different view. Suppose one associates two !'local" data objects with the finite

state control: a current state data object and a current symbol data object.

Further, suppose that one adds to the operational repertoir of the Turing

machine an operation which transfers the value of the finite state control's

current symbol data object to the position on the tape which is currently under



the tape head. Also, add an operation that does the inverse. It is now

possible to restrict the domain of the state transition function entirely to

the values of the finite state control's two local data objects if one assumes

that each step of the computation proceeds as follows:

1) Transfer symbol under tape head to current symbol data object.

2) Compute new value for current state data object and for current

symbol data object based on the present values of these two object.

3) Write value of current symbol data object to the tape.

4) Perform desired operation to reposition to the tape head (e.g.,

Move left, No move, or Move right).

Clearly, these modifications to the traditional notion of a Turing machine

have no effect on its computational power. In fact, in most formal definitions

of a Turing machine it would not be necessary to make any change in the tuple

which describes a particular Turing machine. One would only have to change

the definition of the configuration of the Turing machine to incorporate the

value of the current symbol data object and then make the obvious change to

the relation between two configurations (i.e., redefine a computational step

as specified above). However, these changes do have one very important effect.

They demonstrate that one can view a Turing machine as composed of two separate

parts, a control part and a data part, and that interaction between these parts

can be defined to occur only through an identifiable set of operations. Thus,

these operations precisely define the interface between the control part and

the data part of the Turing machine.

This precisely known interface is very important for at least the

following two reasons:

1) Since the only means of information flow between the process and

*- J*-,



data parts is some known set of operations, each part is effectively

insulated from the representation (or implementation) details of the

other. This property is of course quite unimportant in the normal

context of Turing machines, but is very important in the normal con-

text of programming. In fact, this property forms the basis of the

information hiding that is so important in the work on modules and

abstract data types.

2) It is frequently valuable to constrain the access a process may have

to data objects. If the only access a process has to some data object

is through some set of operations, then there are many constraints

that may be converted into simple restrictions on the set of sequence

of operations the process may perform on the data object. This is

certainly the underlying notion in the work concerning capabilities,

monitors, path expressions, etc.

I have presented this example to illustrate the relation between control

and data that underlies the structured environment model. Namely, I maintain

that there must be some small amount of data which is actually a part of the

control in some intuitive sense. I will refer to such data as local data.

However, it seems that there exists a natural decomposition between the control

and a large portion of the data. I will refer to such data as external data.

In fact, this example and our intuition suggest that one can reduce the local

data to an almost arbitrarily small amount. This then is an intuitive justi-

fication for only constraining the interaction between control and external

data.

I am now prepared to introduce the structured environment model. My

presentation will be heirarchical and I will only present a very abstract view

to begin with.



The first three components that I wish to discuss are:

1) Processes

2) Operations

3) Data Objects.

Abstractly, a data object is an entity with an associated property usually

referred to as a value. But a value is just a property, it is derived by the

interpretation of a representation. Thus, a data object is really an incap-

sulation of a representation which if interpreted properly yields meaningful

information. It is the representation incapsulated in the data object that must

be manipulated to extract or change the information contained in the data object.

Since a data object is just the incapsulation of a representation of information

it is necessarily a static object. That is, a data object does not change in

any way unless its representation is manipulated by some other object. In

this model there are two classes of objects that may manipulate the representation

of a data object. These are the operations and processes mentioned above.

However, I will consider that data objects are divided into two classes: local

data objects and external data objects. Processes may directly manipulate local

data objects only, while operations may directly manipulate data objects of

both classes. The reason for this distinction will be brought out when pro-

cesses are discussed below.

At this point, I wish to be somewhat vague concerning operations. I will

simply say that operations are performed on data objects. The effect of per-

forming an operation on a data object is to manipulate directly the represen-

tation of the data object's associated value, possible causing some change in

the information contained in the data object. For any given data object only

one operation may be performed on it at a time. That is, as far as data objects

_ _ _ -



are concerned, the performance of an operation is an indivisible operation.

An operation may only manipulate the representations of the data objects on

which it is performed. Since operations are the only class of objects allowed

to manipulate the representation of external data objects and since the only

way to extract or change the information in an external data object is to

manipulate its representation, it follows that the only way to extract or

change the information is an external data object is to perform an operation

on it. (The above discussion makes more sense if the reader considers that

the data objects on which an operation is performed may be a subset of the

data objects which one would normally refer to as the parameters of the

operations. I will discuss this much more fully later.)

So far I have described data objects for storage of information and

operations for the transformation of information stored in data objects.

All that remains in order to have a complete computational model is some way

to meaningfully sequence the performance of operations on data objects.

This is precisely the role of processes. That is, processes are the control

units of the model; they each cause a sequential sequence of actions to take

place in order to effect some computation. There are precisely two types of

actions a process may cause:

1) A process may directly manipulate the representation contained in

a local data object.

2) A process may sequentially perform operations on both local and

external data objects.

In particular, no process may directly affect another process. Thus, two

processes can only comunicate through data objects. I will say that data

acted on by more than one process are shared by all those processes that act

on them. (By "act", I am referring to the two types of actions allowed to

processes as described above.) I will also make the restriction that no



local data object may be shared. This has a very important implication: two

processes may communicate only by sequentially performing operations on shared

external data objects. This is the result that I believe justifies the structured

environment model as presented so far.

In summary, I have started to present a model of computation that allows

multiple interacting processes but restricts their interaction to the perfor-

mance of operations on shared data objects. I have given an intuitive argument

for the feasibility of such a restriction by examining a Turing machine and

showing that one can take the view that the finite state control only interacts

with the tape by the performance of certain operations. In Figure 1, 1 present

a decomposition of a Turing machine along the lines of the structured environment

as presented so far.

I would like to use this figure to review several important points:

The process component, which I called FINITESTATECONTROL in

the figure, is strictly sequential in its interaction with the

external data objects (in this case there is only one, TAPE).

I.E., It may perform exactly one operation at a time.

No restrictions are placed on the interaction between the FINITE_

STATECONTROL and its local data objects, CURRENT SYMBOL and

CURRENTSTATE. Nor is anything said about how FINITESTATE_

CONTROL is implemented, except that it is sequential in its

interaction with data objects.

No restrictions are placed on the operations except to say on

which objects they are "performed", i.e, which objects they may

manipulate directly. In fact, I have not prohibited operations

from performing other operations (this topic will be dealt with

later).

Alt



Process: FINITESTATECONTROL

Data Objects:

Local: CURRENTSYMBOL, CURRENTSTATE

External: TAPE

Operations:

WRITE (CURRENTSYMBOL,TAPE): Copies the symbol contained in CURRENT_

SYMBOL to position on the TAPE which is currently under the

tape head.

READ (CURRENTSYMBOL,TAPE): Copies the symbol currently under the tape

head on the TAPE into CURRENT SYMBOL.

MOVELEFT (TAPE): Moves the TAPE's tape head left.

MOVERIGHT (TAPE): Moves the TAPE's tape head right.

FIGURE 1. Structured environment model of a Turing

machine.

In Figure 2, I graphically depi-t the communication allowed in the structured

environment model. In order to illustrate some of the communication problems

that arise in such an environment, I would like to consider an example.

Suppose? one had a system consisting of several processes and a shared

output device which I shall model as a data object. Now suppose that one

wished to insure that the following two properties held in this system:

1) Proper use: Before actually sending data to be output to the

device it must be readied for use. (Consider a printer where

certain forms control and heading information might need to

precede the actual text to be printed.)

1.*



Q Processes Q Data Obiects

e joins proc.sses with bata objects
Key:

on which they perform operations.

Data objects drawn inside of processes are

local date objects belonging to the process.

FIGURE 2. Communication in the structured

environment model.
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2) Proper synchronization: Only one process should be using the

device at a time. I.E., after setting up the device for use,

the same process should retain control of the device until it

has completed its output task.

How can these properties be insured? First of all, one might note that these

are properties concerning the interaction between the processes and the output

device (an external data object).

In the structured environment model there is only one way a process may

interact with an external data object. This requires that such actions as

setting up the output device, writing to it, etc., must be incapsulated in

operations to be performed on the device. But then it should be possible

to translate the above properties into properties concerning the sequence in

which operations are performed. First, I will propose a set of operations

that may be performed on the output device. The following three operations

seem to sufficient.

1) OPEN - Prepares the output device for the next output task

2) WRITE - Causes one unit of data to be output

3) CLOSE - Signals the completion of an output task.

The above properties can now be restated in terms of the operations as follows:

1) Proper use: Each process will always perform operations on the

output device in the order: OPEN, any number of WRITEs, CLOSE.

This sequence may be repeated any number of times. No process

will perform any other operations on the output device.

2) Proper Synchronization: Once one process has performed an OPEN

no other process will perform any operation on the output device

until the first process performs a CLOSE.



Consider Figure 3, depicting the communication paths in the structured environ-

ment model for a two process version of this example.

Now consider how one might insure that the restated properties hold.

The proper use property could be insured by examining each process in

the system and verifying that each process would only perform the allowed set

of operations and then only in the allowed sequence. This method has two

outstanding drawbacks.

First of all it can be very difficult. In fact, it is clear that the

rigorous verification of this property could be as hard as the rigorous veri-

fication of any other property of a process. A very difficult task indeed!

Secondly, t.ais method requires that the definition of all processes

(current and future) be available for examination. However, it is frequently

desirable in a multiprocess environment to be creating new processes some of

which may have been unavailable for examination. (Consider an operating

system running user processes.)

The only general solution to both these drawbacks seems to require some

sort of external constraint on the operations a process may perform on shared

data objects.

In fact, the notion of capabilities can be viewed as a very limited form

of such a constraint. A capability for a data object defines the set of

operations a process may perform on a data object. This, of course, still

leaves the very difficult problem of insuring that processes perform the proper

sequence of operations. I suggest that one needs a general mechanism to con-

strain the sequence of operations performed by a process on a data object. I

therefore add to the structured environment model a component which I call a

rights controller.

.4_ _ _ _ _ _ _ _ _i
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A rights controller is simply a finite state acceptor over the sequences

of operations that may be performed by a particular process on a data object.

That is, each rights controller defines a set of sequences of operations that

may be performed on a particular data object.

In order to make the rights controllers effective, there must be some way

in the structured environment model to require the process to observe the con-

straints of the appropriate rights controllers. I achieve this through the

notion of an environment, where an environment is defined to be a sequence of

rights controllers with the constraint that there cannot be two rights con-

trollers in the same environment controlling the performance of operations on

the same data object. I then specify that there be associated with each

process a single unique environment and that a process may only perform an

operation on an external data object if it is allowed by the appropriate

rights controller in the process's environment.

Since a rights controller is a finite state acceptor of the sequences of

operations that a process may perform on a data object, one obvious way of

describing a rights controller is a state graph with arcs labeled by operations.

Figure 4 describes an appropriate rights controller for the processes in the

output device example. Figure 4 also shows how this rights controller might

be described by a regular expression over operations. The specification of

the structured environment model says nothing about how rights controllers are

to be inplemented, but it does say that a process may only perform the operations

allowed by its rights controllers. Therefore, it would seem that a very reason-

able way to achieve this effect would be through a runtime monitor (i.e., an

active finite state acceptor). Thus, I prefer the state graph description for

its dynamic connotation.

---. .
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controller.



Returning to the output device example, consider the situation of each

process that shares the output device having a copy of the rights controller

described in Figure 4 as an element of its environment. Figure 5 depicts a

two process version of such a situation. (Note that any other elements in

the process's environment cannot directly affect its interaction with the

output device because of the requirement that only one rights controller con-

strains access to the same data object in any one environment.) In Figure 5,

I have interrupted the lines connecting the processes with the output device

to indicate that the only interaction each process may have with the output

device is the performance of the operations allowed by the rights controllers.

This will be the normal way I indicate a process's environment in subsequent

figures. Thus, Figure 5 indicates that each process can only interact with

the output device in precisely the manner required by the proper use property

given above. However, it should be clear that even though each process is

trying to make proper use of the output device, there is no guarantee that

the processes will synchronize their performance of operations properly to

achieve the proper synchronization property given above. For example.

Process 1 might perform an OPEN followed by several WRITEs and then Process 2

might perform an OPEN which clearly violates the proper synchronization

property. Clearly, the notions of environments and rights controllers are

not enough to directly handle the problem of process synchronization.

Consider, for a moment, the structured environment model as it stands so

far. I have constrained the interactions of processes to a single mechanism,

namely the performance of operations on shared data objects.

Suppose I refer to the performance of operations on external data objects

as the behavior of a process. Then one can think of a rights controller as

defining allowable behavior. It follows then that a process's environment
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defines the totality of a process's allowable behavior. However, there are

two possible ways to control behavior:

1) At its source, the process

2) At its destination, the data object.

Thus, I suggest that t!,e problem of synchronization be dealt with as the behavior

arrives at a data object. To this end, I add to the structured environment

model a class of components I call synchronizing controllers. A synchronizing

controller will synchronize the operations that may be performed on a data

object in order to achieve a particular sequence of operations. Thus, the

description of a synchronizing controller is very similar to that of a rights

controller. Namely, it consists of a specification of the sequence of operations

that it allows to be performed on its associated data object. Note, however,

that there is a considerable difference of interpretation. A rights controller

defines the allowable behavior for a process. If the process violates its

allowable behavior then it is outside of the structured environment model, i.e.,

it is in error and must be aborted or something. However, a synchronizing

controller will actively attempt to achieve its required sequence of operations

by delaying processes.

I have referred to the synchronizing and delaying of processes above with-

out describing how this is done. Let me do so now.

Recall that the primary defining characteristic of a process is that it

performs a sequential sequence of actions. Thus, once a process begins to

perform an operation the process is essentially inactive (it cannot interact

with any data object) until the operation is completed. With this in mind I

will decompose the performance of an operation into three phases:

1) scheduling

2) execution

3) completion.

------------
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These phases must occur in the order shown above. The scheduling phase con-

sists of the operation being scheduled by the synchronizing controller associ-

ated with each of the data objects on which it is to be performed. The execution

phase occurs after the scheduling phase has completed and consists of the

actual transformation on the data objects. The completion phase occurs after

the execution phase has completed. This phase marks the completion of the

operation. That is, the process that performed the operation becomes active

again at the completion of the completion phase and is only then able to cause

more actions.

This decomposition allows me to fully explain the action of a synchronizing

controller as follows.

The synchronizing controller has one active function: it schedules

operations to be performed on its associated data object. The synchronizing

controller is an event driven component, with the following two significant

events:

1) An operation to be performed on the synchronizing controller

associated data object entering its scheduling phase,

2) An operation that is being performed on the synchronizing

controllers associated data object entering its completion

phase.

In the first event the operation will be immediately scheduled if and only

if no other operation is currently scheduled or executing on the synchronizing

controllers associated data object and the performance of the operation would

not violate the sequence of operations the synchronizing controller is trying

to achieve.

In the second event the synchronizing controller will schedule one of the

operations pending on its associated data object that is currently allowed in

the synchronizing controllers prescribed sequence of operations, if there are



any such operations.

Note that only one operation will be scheduled or executing at a time

under the above rules.

Now let me return to the output device example and show how a synchronizing

controller can be used to insure the specified synchronization property.

Figure 6a shows the two process version of this example which retains the

rights controllers (drawn in rectangles) developed earlier plus a synchronizing

controller (drawn in a triangle).

Consider how this system would work. Initially I assume there are no

operations pending (waiting to be schedulfd), scheduled or executing on the

output device (as indicated in Figure 6a). Now suppose Process 1 attempts to

perform an OPEN operation. Since there are do other operations scheduled or

executing on the output device and since OPEN is currently allowed by the

synchronizing controller, the OPEN operation would be immediately scheduled,

thus allowing it to execute and complete. This results in the situation shown

in Figure 6b. In this situation Process 1 can perform either a WRITE operation

or a CLOSE operation, either of which would be immediately scheduled and allowed

to execute and complete. However, Process 2 can only perforn an OPEN operation

which would not be scheduled since OPEN is not currently allowed in the

synchronizing controller's prescribed sequence of operations. Thus, if Process 2

performs an OPEN operation, it (the process) will be suspended until a CLOSE

operation is performed by Process 1. Figure 6c shows the semetric situation

where Process 2 has gained control of the output device. In fact, Figures 6a,

6b and 6c show the only three situations that are possible in this simple example.

Thus, it is quite clear that no matter how many processes shared the output

device, the proper synchronization property would hold as long as each process

had a rights controller equivalent to the ones described in these figures.

. -- ..
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Thus, by the combination of rights controllers and synchronizing controllers,

I am able to insure both of the properties concerning the sharing of the output

device. Note that the synchronizing controller by itself would not have insured

the proper synchronization property. For example, if the process were able to

perform the operations in any sequence, then Process 1 might have performed an

OPEN operation, after which any process in the system could perform WRITE or

CLOSE operations because the synchronizing controller is not concerned with

which process is performing the operations.

I would now like to consider some extensions to the output example which

I believe will help to show how truely flexible these behavior controllers are.

Let us suppose that our output device is used for messages to the machine

operator as well as user output. Now, suppose some operator messages need to

be output immediately, i.e., before the end of some user output task. Figure 7

shows how the synchronizing controller for the output device might be modified

to allow processes that have the proper "rights" to "preempt" the output device

from another process. In Figure 7, 1 also describe the two reasonable rights

controllers to go along with the amended synchronizing controller. Figure 8

shows how these rights controllers might be distributed in a three process

system. In a system with such controllers, no matter what state the synchro-

nizing controller is in due to a process with "regular rights", a process with

"priority rights" can perform a PREEMPT operation. This will put the synchro-

nizing controller in a state where only PWRITE and RELEASE operations may be

scheduled, thus effectively preempting the output device. However, among

processes having the "priority rights" preemption cannot occur.

Note that the change to the synchronizing controller and the addition of

the new rights controller would not require any changes to the processes that

continued to use the "regular" rights controller.

Let me continue to add complexity to this example by suggesting that



r07

C ~; ,' "p

va, 4L

(j13E AL

FI UR 7 
& R 3~



/

/ 
-.

/ \

Y .9,. . .

FIGURE 8



after our hypothetical system has been in use for some time, one of the system

users might come in with the complaint that his output has operator messages

in it. Now suppose that this user's output involves the use of expensive

registered forms (e.g., payroll checks) and the system manager decides to

protect the user from preemption.

Figure 9 shows the set of controllers that could be used to effect this

change. Note that the "regular" and "priority" rights controllers are unchanged,

thus no changes would be required in the processes which continued to use them.

The change is simply to add a nonpreemptable state to the synchronizing

controller along with operations to effect the transition into and out of this

state. Note that the "nonpreemptable" rights controller still requires the OPEN

operation first. Thus, the processes with this rights controller must still

wait their turn for initial access to the output device. That is, it was not

necessary to give these processes any special rights except the ability to

prevent preemption during critical parts of their output.

I think that this solution compares very favorably t.. a more traditional

solution involving conventions over semaphores or such. I find especially

impressive the way one is able to modify the constraints concerning the sharing

of a data object without affecting those processes which do not wish to take

advantage of the new features.

In summary, I have presented a model which I called the structured environ-

ment. In this model processes may only interact via the performance of operations

of shared data objects. I refer to this interaction as the behavior of the

processes and have shown that two types of behavioral constraints, rights

controllers and synchronizing controllers, can be used to usefully control the

interaction of the processes in a system. Some of the benefits that I feel

arise from this approach to concurrent process control are listed below:
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Simpler context for verification: Certainly the restrictions on

process interaction along with the external behavior controllers

makes the verification of certain properties much simpler than it

would be in a model that required one to examine the definition of

each process.

Localized scheduling of process: All scheduling in this model occurs

in the event driven synchronizing controllers. This seems to be a

much simpler concept to implement than say a system involving con-

ditional critical regions or predicate locks.

Greater reliability through external constraints: Since the constraint

placed on a process by its rights controllers is independent of the

definition of the process, it should be straightforward to implement

a run-time check to enforce the rights controllers. Thus, this

insures that even in a system with incorrect processes, errors would

not propagate.

AJ



APPENDIX 5

SOME THOUGHTS

ON

AUTOMATIC THEOREM PROVING

IN

DATA BASE DESIGN AND USE

by

W. W. Bledsoe

The paper sketches some of the ways in which research in Automatic Theorem

Proving (ATP) can support the interdisciplinary project on Data Base

Methodology being conducted at The University of Texas.



DATA BASES

Here we treat a data base as a list of facts and information (which

might be distributed over several geographic locations), along with a set

of rules of inference for using these facts. (Figure 1)

LIST OF FACTS

(DISTRIBUTED)

INFERENCE RULES

Figure I

A Data Base

Querries to this data base are processed by

a) Direct lookup

b) By Inference

Also the data base must be tested somehow for internal consistency.

For example, if we have the statements

1) John is older than Mary

2) Mary is 15 years old

in the base, we want to answer querries such as

a) Is Mary 15 years old?

b) Is Mary older than 25?

c) Is John older than 12?

The last two, of course, would require simple inference. Much more compli-

cated cases are desirable and, to some extent, possible.
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If we add the entry

3) Mary is younger than 4 years,

what does the whole thing mean? What, if anything, can it be use for?

EXAMPLES

For example we might have a mathematical Data base (Figure 2)

MATHEMATICAL DATA BASE

LIST OF "ALL" MATHEMATICAL
THEOREMS

DEFINITIONS & AXIOMS RULES
OF INFERENCE

A. PROVE A THEOREM BY FINDING IT ALREADY IN

THE DATA BASE.

B. PROVE A THEOREM BY INFERRING IT FROM

THEOREMS IN THE DATA BASE.

Figure 2
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We can extend this to an engineering data base (Figure 3).

MATHEMATICAL DATA BASE

LIST OF "ALL" MATHEMATICAL
THEOREMS

REMOVE SOME EXOTIC THEOREMS

DEFINITIONS & AXIOMS RULES
OF INFERENCE

ADD ENGINEERING INFORMATION

STRENGTHS OF MATERIALS, ETC. ENERGY CON-
TENT OF VARIOUS FUELS, ETC. LAWS OF
PHYSICS, CHEMISTRY, ETC.

A. PROVE A'THEOREM BY FINDING IT ALREADY IN

THE DATA BASE.

B. PROVE A THEOREM BY INFERRING IT FROM

THEOREMS IN THE DATA BASE,

C. ANSWER QUESTION ABOUT THE DESIGN OF A

BRIDGE OR THE FEASIBILITY OF A SPACE PROBE.

Figure 3



Or extend it to a military data base (Figure 4).

MATHEMATICAL DATA BASE

LIST OF "ALL" MATHEMATICAL
THEOREMS

DEFINITIONS & AXIOMS
RULES OF INFERENCE

ADD MILITARY INFORMATION
DISPOSITION OF OUR FORCES AND EQUIPMENT
STATE OF READINESS, ETC,
DISPOSITION OF ENEMY FORCES
CONTINGENCY OF INFERENICING

A. PROVE A THEOREM BY FINDING IT ALREADY IN THE

DATA BASE.

B. PROVE A THEOREM BY INFERRING IT FROM THEOREMS

IN THE DATA BASE.

C. ANSWER A QUESTION ON OUR ABILITY TO REPULSE A
CONJECTURED ATTACK.

Figure 4



Many other examples easily come to mind.

SOME OBSERVATIONS

Several points can be made

' AUTOMATIC INFERENCIG IS CLEARLY DESIRABLE IN

ALL SUCH EXAMPLES.

a IF WE HAD TRULY POWERFUL AUTOMATIC THEOREM PROVERS,

IT WOULD CHANGE OUR CURRENT PROPOSAL FOR DATA BASE
DESIGN,

a FOR THE NEXT 10-30 YEARS WE MUST SETTLE FOR A
"MODERATE" ABILITY OF ATPS, BUT EVENTUALLY ATP WILL
DOMINATE.

a THE PRESENT PROJECT SHOULD USE THIS MODERATE CAPAC-
ITY, USING AUTOMATIC INFERENCING BUT NOT EXPECTING
TOO MUCH.



ATP AT THE UNIVERSITY OF TEXAS

The University of Texas has been one of the leading centers for ATP

since 1968, and is the most successful in actually carrying out proofs of

moderately difficult theorems on the computer. Our provers have been LISP

programs for the CDC 6600 computer and the DEC 10. In addition to a number

of theorems proved in set theory[l], calculus[2], analysis[3,7,9], and top-

ology[3,9], we have seen our program and ideas successfully used in program

verification systems [5,6], and in incremental design of programs with docu-

mentation and verification [10]. Also we have been early proponents of new

directions [9] now finding their way in ATP research.

Others at UT (Skilossy, Simmons, Chester, and other students) have been

or are now engaged in some form of ATP research. The research on inference

in semantic net [il] seems especially pertinent here.

ROLE IN DATA BASE DESIGN

We would expect to use the concepts from ATP, not the actual programs in

data base design. A team effort would insure that ATP ideas would be inte-

grated into the project in an effective way.

The research would blend nicely with a larger effort here, funded by

NSF, on general ATP.

At this time we feel that inferencing (in Data bases) can best be done

at two levels

1) At the hardware level (simple inferences)

2) At the software level.



In 2) certain "pertinent" information is retrieved from the data base

("semantic paguig") to be used in core memory for deeper inferencing.

We believe that only a moderate capability in ATP can be depended

upon during the next 10-30 years. However in the long run ATP will be the

dominant factor in Data Base design. It is crucial that ATP research,

geared to that application, (here and elsewhere) be supported in the interim.

Two important factors in data base design are

a) conflicting data

b) changing data

These seem to point more toward

1) automatic inferencing, and

2) man-machine cooperation.

LONG-TERM RESEARCH INTEREST

Our group here has a long-term interest in deep inference in data bases,

where a sizable ATP capacity is required. We will be pursuing this interest

independent of this project.

Included in our concerns are

uncertain and conflicting knowledge

predicting with probabilities

• (limited) natural language input and output

• man-machine interaction

mmmmm mb~Z



EXAMPLE

DATA BASE

ALL THE NEWS PAPER STORIES ON

THE MIDDLE EAST FILED BY THE

MAJOR NEWS AGENCIES DURING THE

LAST 10 YEARS. (WITH OLDER

STORIES CAREFULLY CULLED)

+ RULES FOR INFERENCING

QUERRY:

WHAT IS THE LIKELIHOOD OF SYRIA ATTACKING ISRAEL WITHIN

THE NEXT TWO DAYS?

TASK:

DETERMINE THE SOURCE OF THE MAJOR INCONSISTENCIES IN THE

DATA BASE.

We could add to this

INTELLIGENCE INFORMATION ON

, TROOP STRENGTHS AND DEPLOYMENT

, RECENT MOVEMENT

ETC.

I



MAN-MACHINE INTERACTION

1, THE USER WOULD ADD, SUBTRACT, OR CHANGE,

DATA AND INFERENCING RULES,

2. THE USER COULD HELP WITH THE INFERENCING ON
DIFFICULT PROBLEMS (E.G., SUGGESTING RELE-
VANT FACTS).

i -
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Appendix 6

A COMPUTER ARCHITECTURE FOR A FDSS

Jack Lipovski

Computer architecture aims to make recent advances in hardware technology

(especially LSI) useful to the new and demanding software envisioned for a

very large distributed and intelligent data base management system. Some

preliminary architectural features of a planned system are herein sketched

and some problems for research and development are delineated.

Three major computing systems are to be accomodated. Firstly, users

interface with the data base system through a network of intelligent terminals.

Secondly, intelligent discs are located at various nodes in this network and

are powerful enough to search the data where it is stored to avoid shipping

large quantities of data through the network. Thirdly, an array computer will

use parallelism to extend the analytical capacity of artificially intelligent

software. We submit that these three major systems have to be accomodated

because none of them alone, nor any pair of them, are adequate to support the

envisioned software. However, each system can be effectively and economi-

cally built with LSI modules, so the total system will take advantage of LSI

economics. We aim to design each system so that it will interface well with

the other systems and, conversely, we are relieved of the need to perform each

function in any one system alone. The object of studying the three systems

together is to develop each one of them to fit together later on in an integral

system. While we do not propose to build all of them in this project, but

only the intelligent disc, we will design the disc to support distributed queries

in the network and to support deep theorem proving in the array computer.

Other proposals have been or will be submitted to study the other systems.

If the other proposals are funded, they will be used in research conducted in

this proposal. Otherwise, they will be simulated in this proposed research effort.
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Moreover, each system will be designed to work as I/0 devices with existing

computers to provide considerable improvement in their performance, even

though the greatest improvement in performance can only be expected from using

all three computing systems together in a total system.

In the following paragraphs, we outline the three systems. The intelligent

disc, which we plan to build, will be discussed in more detail. The other two

will be sketched for completeness.

1. Other Systems Architectures

1.1 The Network

The network will consist of small microcomputers in intelligent

terminals and intelligent secondary memories and communication will

be accomplished by packet switching in the network. Although the

terminals deserve some study, we need not specify them at this stage

except to say that they have to be able to maintain the user's schema,

a compiler for the data base language, and means to direct packets,

embodying the query, through the network to the intelligent discs.

Upon sending out a query from an intelligent terminal, the object of

a packet will generally be a file on an intelligent disc. The file

will be explained in the next section. A group of files will be at

one physical node of the network of different cylinders of the disc,

or even in tertiary memory in that node. There may be several physical

nodes distributed through the network. In processing a complex query,

references from one file to another will require that packets be sent

from files to files as well. In retrieving the answer to a query,

packets will be sent out from files to intelligent terminals.

This architecture requires that the intelligent disc node be able

to examine an incoming packet to determine which file is to be operated

on. A queue of incoming packets will be buffered and scheduled by a



conventional microcomputer associated with the disc at the node.

Records will be checked for locking to prevent interference among

queues. Once a file is in position to be searched by the logic in

the intelligent disc, and all required records have been locked to

the user, the file will be entirely searched in each disc revolution,

as discussed in the next section.

Of significance, this network architecture combines the problem

of accessing file data from intelligent terminals with the problem

of solving complex queries where one file has to be linked up with

other files. It offers hope in simplifying problems of protection,

lockout and deadlock by locking records within the intelligent disc.

1.2 The Array Processor

The array processor will be used to support artificially intel-

igent software by means of parallelism. Two forms of parallelism

are useful. In vector parallelism, a very wide word width processor

is created by work on vector operands. This is commonly referred to

as single instruction stream multiple data stream (SIMD) processing.

In concurrent parallelism, small independent processors simultaneously

but independently operate on separate pieces of data. This is referred

to as multiple instruction stream multiple data stream (MIMD) processing.

In artificial intelligence programs using LISP, lists can be

"vectorized" by writing them as paranthesized strings. Operations

like EQUAL can be executed on two strings as though they were vectors.

Operations like CDR or CAR can be done in a parallel machine as

simply as in a conventional machine, but no better. However COND and

MAP do not take much advantage from vector parallelism.

In a concurrent machine, each independent processor can evaluate

different lists using standard LISP techniques. Potentially, all



LISP primitives can be executed faster through parallelism. In order

not to have to store the entire LISP interpreter in each memory, a

set of common memories store fragments of the interpreter. Each

processor can fetch instructions from one of the common memories, but

all processors accessing any one common memory must be accessing

exactly the same word in it. With a fixed prngram like a LISP

interpreter, we believe it will be possible to carefully schedule

fragments into common memories to use this technique. Then very small,

cheap processors with a small amount of local memory should be able

to efficiently execute concurrent LISP programs.

The key to both vector and concurrent parallelism is the design

of a powerful but inexpensive computer switching array. We have

submitted a proposal to NSF to build a prototype computer using such

a switch. This computer can be used to experiment with concurrent

and vector parallelism in executing artificial intelligence programs.

2. Intelligent Disc Architecture

From our earlier work on the CASSM system at the University of Florida

and from related work on the RAP system at the University of Toronto, we

have established techniques which will efficiently store relational data

bases and semantic networks on a disc. The logic associated with the disc

makes it sufficiently intelligent to resolve almost all typical relational

queries and sufficiently intelligent to greatly assist extracting useful

data from a semantic network for artificial intelligence programs.

2.1 Physical Description of Disc Hardware

The disc architecture will consist of multiple moving head discs,

in which all heads are on a common frame, and there is one head on

each disc surface. (We are looking at IBM 3330 or equivalent discs
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that store about 109 bits per removable disc pack). By moving the

frame, the heads are located over a given "cylinder". One or more

such discs will be operated together so that their "cylinders" form

a larger cylinder. The data on this larger cylinder is called here

a file. For instance, if three IBM 3330 discs are operated together,

a larger cylinder would have 60 heads on 60 surfaces. Two hundred

such files are stored on the 200 cylinders of an IBM 3330 disc.

More files may be stored in tertiary memory, and paged into cylinders

of the disc. Exactly one file will be under the moving disc heads

at any time.

In one revolution of the discs, an "instruction" is executed on

the entire file. A typical query consists of in the order of ten

instructions which will be executed on the same file. Upon receipt

of a query at an intelligent disc by the microprocessor that controls

the disc, the file requested by the query is positioned under the

heads, either by moving the heads or by moving the file in from

tertiary memory. The heads remain positioned over the file as the

disc revolves, to execute the query, for about ten revolutions.

The heads are then positioned over the file needed by the next query.

Each head will have a "microprocessor" similar in complexity to the

popular microprocessors but having quite different organization and

instruction set. It will be attractive to put each "microprocessor"

in an LSI chip. A disc track and "microprocessor" are called here a

cell. The logic looks like a chain of identical cells. See figure 1.

2.2 Storage of Data

The file consists of records of a variable number of words,

and the words are fixed length and are divided into fields. Each



word has a mark bit on the disc for content search operations.

Records correspond to tuples in the relational data base system and

to nodes in semantic networks. The first word of each record stores

a bit stack for context search operations. Other words appear to

store domain names and items in the tuple, or arcs incident from

the node in the network. See figure 2 for storage of relational

tables and figure 3 for storage of (semantic)networks. Figure 2a

shows two relations while figure 2b shows their storage on the disc.

Figure 3a shows a network like a semantic network, while figure 3b

shows storage of the network on the disc.

Note, in figure 2b that a file can contain many relations

(tables) and that each tuple (row) is stored as a record. In this

figure, two relations (officer and parts) happen to be stored on

the same file. Note that the tuples from different relations can

be intermixed, but that a field in the first word in each tuple

or record identifies the relation that the tuple is in by a code

word. For each domain (column), a word containing a pair of code words

in fields, domain name and domain value, are stored.

Note, in figure 3b that each node is stored as a record and

records are numbered according to their position from top to bottom

in the file. For instance, node "Tom" is stored in the 21st record

from the top of the file. For each node, its corresponding record

contains in its first word a field containing the code word of the

node name and in succeeding words a pair of fields associated with

each are in the network that is incident out of the node. The fields

are best explained by example. For instance, in record 20 corresponding

to the node "John", the arc (John, father, Tom) is represented by



the word (father, 21) where "father" is a code word and 21 is a

number, since 21 is the record number for the node "Tom".

Though not fully shown in the above examples, the key problem

is efficient storage of data. That is why code words are used rather

than character strings. A mechanism to convert between code words

and character strings by means of hardware has been worked out.

Moreover, the left field of each word can be generated by means of

a counter in the "microprocessor" associated with the disc track

rather than stored on it if the code words are consecutively numbered.

These fields that are generated in the "microprocessor" are called

imaginary fields. The user need not concern himself about whether

data is stored in real or imaginary fields, for instructions will

treat the files as shown in figures 2b or 3b, whether or not some

left fields are actually generated by hardware.

2.3 Content Searching

Each word is provided with a bit (mark bit) which can be

modified by a content search instruction. The bit is set if the

content of the word matches the argument of the instruction, and is

cleared otherwise. For instance, in figure 2b, if the operand of a

content search were P#, 30, then the mark bit of the eighth word

would be set and all other mark bits would be cleared. Content

searching is normally used to single out individual words to be

rewritten, output, or deleted.

2.4 Set Oriented Context Searching for Relational Data Bases

Each record is provided with a bit stack located in the first

word of the record. If the argument of a context search "push",

instruction is in a record, a 1 bit is pushed on the bit stack for
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that record, else a 0 bit is pushed on the bit stack. A context

search instruction could "AND" the result of the search with the top

bit on each bit stack, or "OR" or "AND the COMPLEMENT", etc.

Consider a query to locate Captain Smith in figure 2. The

query is translated into the following program:

1) PUSH "IS-AN" "OFFICER"

2) AND "RANK" "CAPTAIN"

3) AND "NAME" "SMITH"

4) MARK(OUTPUT) "LOCATION",

Instruction 1 pushes a 1 onto the bit stacks for the first and third

records, and a 0 onto that of the second record. Instruction 2

AND's a 1 bit onto the bit stack of the first record, but AND's a

0 onto the other bit stacks. Instruction 3 does the same (in this

simple example). Instruction 4 marks, by content searching within

records that have a I bit on top of their bit stacks, the words

whose left fields are "LOCATION". The marked words are output as

the response to this query. This query is effectively answered in

four disc revolutions. Typical queries should be answered in ten

disc revolutions, independent of the size or complexity of the file.

In hardware, the results of the search are stored temporarily

in a one bit wide random access memory, which has 1 bit per record,

and are processed by pipelining to appear to move the results to the

bit stack so that one context search can be executed each disc

revolution. Complex Boolean queries can be an.lyzed over all tuples

in a file in a number of revolutions proportional to the number of

terms in the query expression and independent of the size of the

file. (No conventional data base management system can approach



this ideal.) Moreover, there is no need for directories to locate

relations within a file and tuples from a relation can be scattered

throughout the file because the entire file is searched each disc

revolution.

2.5 Other Set-Oriented Functions

It is possible to find the intersection of two sets in two disc

revolutions. The one bit wide, RAM (mentioned in section 2.4) is

initially cleared. In the first revolution, elements (code words)

of the first set provide addresses to set bits of the RAM. In the

second revolution, elements (code words) of the second set provide

addresses to read bits from the RAM. If a 1 is read, the word of

the second set is marked. Only if an element is in the intersection

will that bit be both set and read, and the word marked. (Other

researchers have also shown that duplicates can be deleted by a

similar procedure.)

It is possible to execute an inner product "threshold search"

as shown in figure 4. Each word on the disc has an associated

weight, as word A in record 23 has weight 3. The argument of the

instruction also has a weight. The argument, its weight, and a

storage buffer are in registers in each head.. If the word matches

the argument, the two weights are multiplied and saved in the buffer.

The bottom word of each record contains an accumulator, the number

in the buffer is added to it. Thus, an inner product "threshold"

search can be conducted simultaneously over all records in a file.

The buffer can also be used for simpler functions. The maximum,

minimum, sum or count of marked words can be conducted in each

record or the entire file. In particular, after an inner product

_____________________



threshold search, the set with the maximum accumulator value can be

marked. Equally important, the number of marked words can be counted

before they are output, to determine whether there are too many to

be of interest.

2.6 Network Oriented Context Search Instructions

Pointers from one record to another are stored by putting the

record number of the second record in the right field of a word in

the first record. See figure 3 again, where the "father" pointer

from record 20 (for "John") points to record 21 (for "Tom"). The

RAM discussed earlier is used to transfer tokens. The RAM is

initially cleared. If the argument of a token transfer search is

found in the left field of a word in a record having a 1 bit on the

top of its stack, the right field is used as an address to set a

bit in the RAM. In the following revolution, a counter that counts

records as they pass over the head is used to address the RAM to

push the values stored there onto the bit stacks of the records.

Pipelining allows the second revolution to be "hidden" so that

tokens can be effectively transferred in one disc revolution.

Consider a query to find the grandsons of "John" in figure 3.

The instructions are:

1) PUSH "IS-A", "John"

2) PUSH "FATHER", TOKEN

3) PUSH "FATHER", TOKEN

4) MARK(OUTPUT) "IS-A",

After the first revolution, a I is effectively pushed onto the bit

stack of record 20, and a 0 is pushed onto all other stacks as

discussed in section 2.4. After the second revolution, a 1 bit is



pushed onto the bit stacks of records 21 and 23 simultaneously, and

after the third, a 1 bit is pushed onto that of record 25. After

the next revolution, the work "IS-A", "BILL" is output. Such a

query is effectively executed in four revolutions.

One of the most useful applications of pointers and token

transfers across pointers is semantic paging for deep theorem

proving programs. See figure 5. Context addressing, threshold

searching and so on can be used to select one or more nodes of a

network. Then tokens can be transferred without regard to pointer

names from these nodes in n layers, one layer per revolution, to

mark a subgraph containing the selected nodes and all nodes up to

n arcs distant from the node. The records so marked can then be

paged into a parallel computer for analysis by a deep theorem proving

program. Semantic paging should effectively filter the data to

a small size subgraph that is manageable in a parallel computer,

so that it can thoroughly analyze the subgraph at high speed.

2.7 Other Hardware Functions

The disc "microprocessor" will also collect garbage words by

a hardware mechanism that operates concurrently with instructions

that are evaluating a query. Also, data can be input and marked

words can be output while instructions are processing a query.

(Interlocks will be provided so that inputs or outputs from one

query are not mixed with those from another.) Character string to

code word translation is carried out automatically upon input and

code word to character string translation is automatically carried

out on output. Finally, disc processor instructions are to be

stored on and fetched from the disc itself to manage "demons".

---



The disc is capable of storing a large number of "demons" by

storing data words and instruction words in records. Data words

are searched by context or by token transfer to activate instruction

words in the records satisfying a query. The activated instructions

are executed on the disc one at a time as they are deactivated.

These concurrent hardware functions increase the performance of the

intelligent disc, and make possible some new and possibly revolu-

tionary software techniques.

3. Parallel Computation in Automatic Theorem Proving

There are several ways in which parallel computation might speed up an

automatic prover.

A. Evaluating an And-node.

Whenever the prover is asked to prove a subgoal like

Vx (P (x)Q (x))

one processor can be asked to prove P(x) (ie., to find a value

or values, for x that will satisfy this formula), and another

processor can be asked to prove Q(x). The answers from these two

would then be reconciled (if possible) to obtain a common value

(or values) or x satisfying by A(x) and B(x).

B. Evaluating an Or-node.

Whenever the prover is proving an or-node of the form AV B,

or is trying a list of possible strategies to obtain the proof of

a given subgoal, a separate processor can be assigned to work each

of A and B , or each of the strategies. The subgoal would be

satisfied when one of these processors succeeded.

km4. A



C. Simplification and Reduction.

Much of modern theorem proving involves rewriting a formula

into a canonical form. For example, the formula (1 + y - 5 + x)

might be rewritten as (x + y - 4), or the formula (xc AAB) might

be rewritten as ((xEA)A (xcA)). Parallel processors could

greatly speed up this kind of process.

Many of these examples of parallel computation can be handled

by an extension of LISP which would allow a parallel COND. That

is for the command

(COND

(P A)

(Q B)

( R C ) ),

it would simultaneously calculate P, 0, and R, determine

which was true, and return accordingly A, B, or C (or some

function of them if more than one of P, Q, and R was true).
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1) SELECT NODE(S) BY CONTENT OR CONTEXT,

2) TRANSFER TOKENS OUT THROUGH ARCS N TIMES.

3) OUTPUT ALL NODES WHICH RECEIVED TOKENS.




